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Summary
Particle-based simulations are ubiquitous throughout many fields of computational science
and engineering, spanning the atomistic level with molecular dynamics (MD), to mesoscale
particle-in-cell (PIC) simulations for solid mechanics, device-scale modeling with PIC methods
for plasma physics, and massive N-body cosmology simulations of galaxy structures, with
many other methods in between (Hockney & Eastwood, 1989). While these methods use
particles to represent significantly different entities with completely different physical models,
many low-level details are shared including performant algorithms for short- and/or long-range
particle interactions, multi-node particle communication patterns, and other data management
tasks such as particle sorting and neighbor list construction.

Cabana is a performance portable library for particle-based simulations, developed as part of
the Co-Design Center for Particle Applications (CoPA) within the Exascale Computing Project
(ECP) (Alexander et al., 2020). The CoPA project and its full development scope, including
ECP partner applications, algorithm development, and similar software libraries for quantum
MD, is described in (Mniszewski et al., 2021). Cabana uses the Kokkos library for on-node
parallelism (Edwards et al., 2014; Trott et al., 2022), enabling simulation on multi-core CPU
and GPU architectures, and MPI for GPU-aware, multi-node communication. Cabana provides
particle simulation capabilities on almost all current Kokkos backends, including serial execution,
OpenMP (including OpenMP-Target for GPUs), CUDA (NVIDIA GPUs), HIP (AMD GPUs), and
SYCL (Intel GPUs), providing a clear path for the coming generation of accelerator-based
exascale hardware. Cabana builds on Kokkos by providing new particle data structures and
particle algorithms resulting in a similar execution policy-based, node-level programming model
that is intended to be used in addition to the core Kokkos library within an application. Cabana

is designed as an application and physics agnostic, but particle-specific toolkit which can either
be used to generate a new application, or to be used as needed in existing applications at
various levels of invasiveness including through interfaces that wrap user memory in existing
data structures.
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Statement of need
For the most part, particle simulation codes targeting high performance computing have been
developed specific to a given application area. Examples include HACC for cosmology (Habib
et al., 2016), LAMMPS for atomic systems (Plimpton, 1995), and XGC for plasma physics (Ku
et al., 2018) (all ECP partner applications for the CoPA project). In contrast, other areas of
computational science have successfully developed motif-based libraries, e.g. AMReX for block
structured adaptive mesh based simulations (Zhang et al., 2019), with many applications sharing
the development effort for common needs. Co-designing software for a simulation “motif” such
as particles is increasingly important as hardware for scientific simulations continues to evolve,
becoming more heterogeneous, requiring more effort to extract performance, and otherwise
likely requiring separate versions of a single application (or kernel) for each vendor-specific API
to utilize the multitude of available accelerators. We note that there are some well designed and
broad featured general particle simulation libraries: AutoPas automatically chooses underlying
particle algorithms and parallel options using performance tuning (Gratl et al., 2021) and
OpenFPM includes both particle and particle-grid capabilities (Incardona et al., 2019). However,
the former does not currently support GPUs and the latter currently supports only CUDA (and
does so internally, rather than through a separate library such as Kokkos). To address this need,
our objective is to provide scalable software services applicable to high-performance scientific
codes across numerous application domains through general particle algorithms and data
structures that are performant on a variety of distributed memory and accelerated architectures
in a single implementation.

Particle capability
Cabana provides particle data structures to optimize performance across hardware through an
array-of-structs-of-arrays (AoSoA) concept. This directly extends the Kokkos::View (portable
multidimensional arrays) with an additional dimension that creates small, statically-sized groups
of particles. Intermediate between struct-of-arrays (SoA) and array-of-structs (AoS), the size
of these groups may be changed depending on the compute hardware in use which makes
the data layout configurable to achieve the performance of SoA in SIMD-like settings where
coalescing is achievable and the memory locality of AoS when random access memory patterns
dominate. This tunable layout was designed to enable optimal performance across multiple
kernels and across different hardware for a given application.

The main algorithmic functionality of the library includes particle neighbor list generation and
traversal, particle redistribution and halo communication for domain decomposition, and particle
sorting. Particle sorting currently builds directly on Kokkos binning and sorting capabilities.
Similarly, parallel iteration within Cabana algorithms directly uses Kokkos options for threaded
parallelism. As with the AoSoA, Cabana extends the Kokkos::parallel_for (portable parallel
execution) with SIMD-parallel capabilities for threading over the AoSoA data structures, as well
as neighbor-parallel iteration over both central particles and their neighbors (potentially with
many-body interactions and multiple levels of neighbors) with user-configurable options for
serial or threaded execution as needed for application performance. Particle communication
for multi-node simulation uses GPU-aware MPI, with capabilities for migrating particles from
one unique owning rank to another, as well as to gather and scatter particle information from
owning ranks to neighboring ranks.

Existing packages are also leveraged for accelerating complex operations. For example, an
interface to ArborX, a library for performance portable geometric search also built on Kokkos,
has been included for neighbor list creation which is more scalable for non-uniform particle
distributions than other options in Cabana (Lebrun-Grandié et al., 2020).
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Particle-grid capability
In addition to particle-specific algorithms, almost all particle-based codes use grids in some
way. To support these applications Cabana also provides algorithms and data structures for
many particle-grid motifs within the Cajita subpackage. Distributed, logically rectilinear
grid data structures and high order, multidimensional spline kernels and spatial gradients
are available, together with the requisite parallel communication to interpolate data between
particles and grids. While this is most relevant to PIC methods and long-range MD algorithms,
grid structures are useful even in simulations which are generally “mesh-free” (e.g. short-range
MD), for accelerating neighbor list generation and multi-node spatial decomposition. In
addition, support for sparse grids is in progress to enable only allocating and iterating over the
grid where particles exist.

As with the core particle package, Cajita includes interfaces to separate libraries for complex
particle-grid related motifs. This includes distributed, performance portable fast Fourier
transforms (e.g. for long-range MD and N-body simulations) through the heFFTe library (Ayala
et al., 2019)), preconditioners and linear solvers for structured grids through the HYPRE library
(Falgout & Yang, 2002), as well as redistribution of the grid across MPI ranks for non-uniform
particle distributions through the ALL load-balancing library (Halver et al., n.d.).

Exascale design patterns
Cabana has been designed for performance across both multi and many-core systems (CPU and
GPU). Often, a focus on GPU performance also results in relatively good CPU performance
(while the reverse is often not true). However, one notable exception is the relative efficiency of
threaded atomic operations (hardware support for avoiding data race conditions) on each type
of device. Kokkos provides support for this discrepancy through the Kokkos::ScatterView,
where by default the GPU uses atomic memory and the CPU uses data duplication, which
is being increasingly relied upon throughout Cabana. Cabana also primarily encourages a
GPU-resident strategy: data is created and computed on the device without intermittent
copies to the host to whatever degree possible. This is in contrast to a GPU-offload approach,
although this strategy is still possible through the library.

Data structures across physics kernels

The AoSoA data structure enables not only flexibility for ideal layouts for different architectures,
but also for complex physics applications with multiple kernels that are each optimized for
a different data layout. This is common, for example, in molecular dynamics where the
particle update (integration) kernel has regular memory access across all particles which can be
effectively coalesced and therefore an SoA would be the optimal choice. Elsewhere in the time
integration loop, the particle interaction kernel is based on random memory accesses across
neighbors of each particle such that an AoS would be preferred for performance. Rather than
pay the performance penalty of choosing one data layout (SoA or AoS) which is suboptimal for
at least one kernel or transposing data to the optimal layout for each kernel, the AoSoA enables
performance near the ideal for both kernels. Further discussion of the AoSoA is provided in
(Mniszewski et al., 2021).

Separating memory and execution

In creating Cabana, optimal design patterns have emerged to build application functionality.
The first such pattern is the separation of memory and execution spaces, which are general
Kokkos concepts for where data resides and where parallel execution takes place: host (CPU)
or device (GPU). The Kokkos Device combines both in one object, leading to one design
strategy in the following code:

template<Device>

struct Foo
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{

    View<typename Device::memory_space> _device_data;

    void bar()

    {

        parallel_for<typename Device::execution_space>( _device_data );

    }

};

The class is created such that the same memory and execution space must always be used to
store and operate on the data. In contrast, Cabana has moved to the following design:

template<MemorySpace>

struct Foo

{

    View<MemorySpace> _device_data;

    template<class ExecutionSpace>

    void bar( const ExecutionSpace& exec_space )

    {

static_assert( is_accessible_from<MemorySpace,

ExecutionSpace>{}, ”” );

        parallel_for( exec_space, _device_data );

    }

};

Here, the class data is stored in a specific memory space and, separately for each parallel
execution, the user can choose any execution space that is compatible with that memory
space. This greatly increases the flexibility of the class for using different parallel threading
backends on a given device, e.g. both OpenMP-Target and vendor-specific backends. This
also extends to easier adoption of newer execution options, such as CUDA streams, which can
enable coarse-grained asynchronous tasking in applications. In addition, this makes the class
amenable to both separate host or device computation as well as an offload model where a
new overload that first copies the data to the class memory space is all that is required. In
user code, multiple instances of this class may be used with different memory and execution
spaces possible for each instance.

Enabling kernel fusion

A more specific design pattern that enables not only flexibility, but also significant performance
improvements in some cases, is support for kernel fusion. As an example, below is a straight-
forward implementation for a simulation that needs particle-grid interpolation for multiple
physical entities using Cajita:

// Create halo exchange pattern for an individual array.

auto halo = Cajita::createHalo( field, ... );

// Interpolate scalar gradient to the grid with kernel and MPI scatter.

auto val_1 = Cajita::createScalarGradientP2G( ... );

Cajita::p2g( val_1, ..., halo, ...);

// Interpolate tensor divergence to the grid with kernel and MPI scatter.

auto val_2 = Cajita::createTensorDivergenceP2G( ... );

Cajita::p2g( val_2, ..., halo, ... );

Often, the time to launch each kernel and communicate the data (in a distributed and
accelerated computing setting) is significant compared to the time for the execution of the
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parallel kernel itself which introduces significant latency costs. In the above case, each function
call requires a separate parallel kernel and scatter communication kernel. The following
reimplementation can, in some cases, improve performance considerably:

// Create fused halo exchange pattern.

auto fused_halo = Cajita::createHalo( ..., *field_1, *field_2 );

// Fused local interpolation of both properties.

Kokkos::parallel_for( exec_space, num_point, points,

    KOKKOS_LAMBDA( const Particle& p ){

        Cajita::SplineData<float,3,Cajita::Node> sd;

        Cajita::evaluateSpline( p.x );

        Cajita::P2G::gradient( sd, p.scalar_field, field_1 );

        Cajita::P2G::divergence( sd, p.tensor_field, field_2 ); });

// Fused MPI scatter.

fused_halo.scatter( exec_space, Cajita::ScatterReduce::Sum,

field_1, field_2 );

There are a number of benefits to this approach. First, the number of kernel launches
in an accelerated setting and MPI communication calls have been reduced by a factor of
2, thus reducing latency. Second, identical quantities that would have been computed in
each interpolation kernel, such as the spline interpolation data, can be reused for multiple
interpolations to reduce total operation counts. Third, our experience shows that kernel
fusion often allows for temporary variables that are needed across multiple kernels no longer
need to be allocated in large global memory arrays and can instead become in-kernel, thread-
local temporaries, significantly reducing memory costs. Finally, cache performance can be
significantly improved due to global data reuse combined with the AoSoA data structure such
that a single particle is accessed multiple times in a single kernel rather than a single time in
multiple kernels.

Tutorial, proxy applications, and Fortran support
An extensive set of documentation, tests, and examples are available for Cabana including
unit tests, tutorial examples, and performance testing across library functionality along with
the GitHub wiki and doxygen API documentation. Continuous integration is used to ensure
software quality, with testing across Kokkos backends and corresponding architectures. In
addition, a Cabana Docker container is deployed, spack installation is available, and Cabana

is a part of the Extreme-scale Scientific Software Stack (E4S) (E4S, 2021) to enable easy
testing and use. For Fortran integration, a separate repository exemplifies using Cabana with
Fortran applications (CoPA, 2021). Many proxy applications have also been developed using
Cabana: CabanaMD for MD, CabanaPIC for plasma PIC, ExaMPM for the material point method
(MPM), and HACCabana for N-body cosmology (CoPA, 2021). Proxy apps are relatively simple
representations of the main physics in production applications and have proven useful within
the Cabana development process for demonstrating library needs, capability, and performance.
The proxy apps developed thus far also demonstrate the potential for rapid prototyping of
particle codes on emerging hardware and interactions with hardware vendors.

Application adoption and future work
Cabana is designed for high-performance, large-scale particle simulations, with early adoption by
the XGC plasma physics code (Mniszewski et al., 2021; Scheinberg et al., 2019), as well as the
new PicassoMPM code for additive manufacturing (Belak et al., 2019), both a part of ECP. One
important aspect of continuing work is consistent interaction with Cabana-based applications,
contributing algorithms and data structures back to Cabana where they could be useful in
other particle applications. Similarly, interaction with the Kokkos team is critical to keep
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Cabana up-to-date with the latest architecture trends, but also to potentially contribute general
parallel approaches or data structures from Cabana, where appropriate. Other continuing work
includes tighter integration of the particle and particle-grid motifs, load balancing, additional
input/output capabilities, and performance optimizations on early exascale systems.
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