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We present a coarse-graining strategy that we test for aqueous mixtures. The method uses
pair-wise cumulative coordination as a target function within an iterative Boltzmann inver-
sion (IBI) like protocol. We name this method coordination iterative Boltzmann inversion
(C–IBI). While the underlying coarse-grained model is still structure based and, thus, pre-
serves pair-wise solution structure, our method also reproduces solvation thermodynamics of bi-
nary and/or ternary mixtures. Additionally, we observe much faster convergence within C–IBI
compared to IBI. To validate the robustness, we apply C–IBI to study test cases of solvation
thermodynamics of aqueous urea and a triglycine solvation in aqueous urea. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4947253]

I. INTRODUCTION

Systematic structural coarse-graining, or systematically
reducing degrees of freedom of a complex (macro)molecular
system, is a paramount challenge of multiscale modeling.1–3

Deriving coarse-grained (CG) models has several advan-
tages — (1) When a multi-atom molecule and/or segments of
a macromolecule are represented by a single site bead, the
molecular dynamics (MD) simulation setups result in a smaller
number of particles and thus give a significant computational
gain. (2) The non-bonded interactions between CG beads
are usually smooth. Therefore, large simulation time steps
can be chosen. (3) The smooth interaction potentials lead to
faster dynamics, which results in faster equilibration of the
reference system. In this context, there are several possible
CG techniques of deriving CG potentials, such as force
matching,4,5 inverse Monte Carlo,6,7 Boltzmann inversion
(BI)8,9 and its extension to (iterative) Boltzmann inversion
(IBI),10 relative entropy,11 and/or potential of mean force.12–14

Additionally there are also well known CG models, examples
include the Molinero water model15 and the free energy
based MARTINI model.16 All these methods aim to target
(or reproduce) a certain property of the underlying all-atom
reference systems. Therefore, it is often difficult to map
every property of a physical system within a unified CG
model, posing grand challenge in the representability and
transferability of CG models.1,2 For example, in the case of
liquid water, an IBI derived CG model usually presents a
pressure of about 6000 bars,17 which can be readjusted to 1
atm using a pressure correction.10,17 However, this pressure
correction compromises the fluid compressibility and thus
results in unphysical fluctuations. In this context, a more recent
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work, employing a pressure correction at barostat level, could
preserve both pressure and compressibility within a unified
CG model.18 The complexity of deriving CG models grows
even further when dealing with macromolecular solvation
in solution mixtures, where thermodynamic properties are
intimately linked to delicate intermolecular interactions and
local concentration and/or conformational fluctuations.19

A widely used structure based CG method is the well
known BI8,9 and the IBI,10 where the pair-wise non-bonded
potential is obtained by inverting g(r) within an iterative
procedure. In this context, being a simplified method, IBI
works exceedingly well for several systems, including polymer
melt,8–10 single component fluids20 and, also, to some extent
for multicomponent fluids, to name a few. However, IBI does
not guarantee that the derived CG model reproduces the same
solvation thermodynamic state point as that of the reference
all-atom system, especially for multi-component fluids. This
is particularly because IBI targets to fit g(r) and, for binary
mixtures, the convergence of pair-wise g(r) (unity at large
distances) often suffers from the very nature of CG protocol.
Therefore, a small absolute deviation in g(r) can lead to a
significant error in the cumulated coordination numbers. For
example, estimation of coordination, given by

Ci j(r) = 4π
 r

0
gi j(r ′)r ′2dr ′ (1)

with the indices i and j standing for every set of pairs, uses
a volume integral of g(r). This requires g(r) to be multiplied
by a factor of 4πr2 and a small error in g(r) are weighted
by a factor of 4πr2. Therefore, it is important to obtain a
precise estimate of g(r) for all r values and thus presents a
need to devise a better, yet simple, CG protocol, which is the
motivation behind this work.

Additionally, an accurate, yet simple, CG model is
highly important for hybrid simulations, such as the adaptive
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resolution scheme (AdResS).21,22 In AdResS a small all-atom
region is coupled to a CG reservoir. Correct thermodynamic
conditions within the all-atom region are strongly related
to the particle fluctuations and thus requiring a CG region
that presents precise measure of the fluctuations compared
to the all-atom region. This is even more important for the
multicomponent fluids.19,23

The above mentioned reasoning poses grand challenges
to the derivation of CG models to study solvation
properties of solvent mixtures, especially because solvation
thermodynamics is dictated by the following: (1) the energy
density within the solvation volume of the macromolecule,
(2) the local concentration fluctuation of the two solvent
components, and (3) the entropic contributions, especially
near the transition region of macromolecules where a delicate
balance between entropy and energy plays a key role. In
this context, the energy density is not only related to the
(co)solvent-macromolecule interaction strengths but also to
the solution composition within the solvation volume19 and
thus is related to the first shell coordination number. However,
fluctuations are related to the convergence of the tails of
pair-wise radial distribution functions g(r).24 This presents
a need for a protocol that can get both the above scenarios
correct within a simplified CG strategy. Therefore, in this
work we devise a method that aims to use C(r), as a target
function within an IBI-like iterative protocol. Our method
not only gives a precise estimate of the coordination number
in comparison to the reference all-atom system but also the
precise estimate of the solvation properties. Added advantage
of this protocol is that it presents a much faster convergence
in comparison to the conventional IBI protocol.

The remainder of the paper is organized as follows: in
Section II we sketch the method followed by the result and
discussion in Section III. Finally in Section IV we draw our
conclusions.

II. METHOD AND MODEL

A. All-atom simulations

The CG model is derived from an underlying all-atom
reference system. We use test cases of aqueous urea mixtures
and the solvation of a single triglycine in aqueous urea
mixtures, which was studied by two of us in an earlier work.25

The reference all-atom simulations are performed using
GROMACS.26 We use the Kirkwood-Buff (KB) derived force
field for urea27 and the SPC/E water model.28 A combination of
these two force-fields for the aqueous urea mixtures are known
to reproduce correct solution thermodynamics. We consider
four different urea molar concentrations cu, ranging between
2.0M and 8.0M. We restrict the concentration to below 8.0M
because urea is known to denature proteins at around 6M
solutions.29 System sizes are chosen to be consisting of
∼16 000 molecules, where we consider four different mole
fractions 2.0M, 4.0M, 6.0M, and 8.0M. The specific choice
of these system sizes give reasonable convergence in the
thermodynamic properties, which usually suffer from severe
system size effects within small systems.19,23 The force field
parameters for triglycine are taken from Gromos43a1.30 The

all-atom simulations are performed for 25 ns within an NpT
ensemble, where the pressure is controlled with a Berendsen
barostat at 1 atm pressure with a coupling time of 0.5 ps.31 The
initial configurations for the all-atom simulations are taken
from a 50 ns long equilibrated sample from our earlier study.25

The temperature is set to 300 K using a Berendsen thermostat
with a coupling time of 0.1 ps. The integration time step is
1 fs. The interaction cutoff is chosen as 1.4 nm. Electrostatics
is treated using particle mesh ewald.32 The bond lengths of the
urea molecules and triglycine is constrained using the LINCS
algorithm.33

B. Coarse-grained simulations

The IBI and C−IBI derived CG potentials are used to
simulate full blown CG configurations. The temperature is
set to 300 K using a Langevin thermostat with a damping
constant of 0.2 ps. Simulation time step is chosen as 4 fs and
the cutoff distance is 1.4 nm. Simulations are conducted for
50 ns. We use the last 25 ns of a trajectory from 50 ns to
calculate observables, such as g(r), urea activity coefficients
γuu, and the shift in solvation free energy ∆Gt of triglycine.
CG simulations are also performed using GROMACS.26

III. RESULTS AND DISCUSSIONS

A. C−IBI: coordination iterative Boltzmann inversion

Before describing our C−IBI method, we first briefly
comment on the conventional IBI method. The procedure
starts from an initial guess for the potential of the CG model
using gi j(r) obtained from the all atom simulation,

V0(r) = −kBT ln
�
gi j(r)� . (2)

Then the potential is updated over several iterations using the
protocol,

VIBI
n (r) = VIBI

n−1(r) + kBT ln


gn−1
i j (r)

gtarget
i j (r)


. (3)

During every iteration, a 1 ns long MD run of the CG system
is performed using the potential obtained at the end of the
preceding iteration. In Fig. 1(a) we present a comparison
between fitted g(r) after 25 IBI iterations (symbols) and the
reference all-atom data (solid lines). At a first look, it appears
to be in reasonably good agreement. Moreover, the first shell
coordination C f

i j = 4π
 r0

0 gi j(r ′)r ′2dr ′ shows a deviation of
roughly ∼2%–4%. Note that C f

i j requires integration over
the first peak of g(r), thus we have chosen r0 = 0.32 nm for
water-water, 0.48 nm for urea-water and 0.58 nm for urea-urea
distributions, respectively. For example, a small error within
the first few solvation shells (as observed in g(r)) cumulatively
adds up to a large error at the tail and thus severely disturbs
particle fluctuations. In this context, this small error is not
recognized within the IBI protocol, where the corrections
are weighted with a factor of 1/r2 – when looking into the
coordination numbers. This leads to a position dependent
error, which is most severe for large r values, and also added
cumulative error from the earlier r values. Therefore, there
is a need of a protocol, especially for binary mixtures, that
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FIG. 1. Pair distribution function g(r) between different solvent pairs for a
6M aqueous urea mixture. The solid lines present the reference all-atom data
and the symbols are fitted coarse-grained g(r) after 25 iterations. (a) is the data
corresponding to the iterative Boltzmann inversion (IBI) and (b) corresponds
to the coordination iterative Boltzmann inversion (C−IBI).

gives precise solvation properties. A theory that can serve as
an excellent guide to achieve this purpose is the fluctuation
theorem of Kirkwood and Buff (KB).24 KB theory connects
the pair-wise coordination with particle fluctuations and, thus,
with the solution thermodynamics. KB theory makes use of
the “so called” Kirkwood-Buff integrals (KBIs) Gi j defined
as

Gi j = V




NiNj

�
− ⟨Ni⟩ 
Nj

�

⟨Ni⟩ 
Nj

� −
δi j

Nj

�


= 4π
 ∞

0


gµVT
i j (r) − 1


r2dr (4)

where averages in the grand canonical ensemble (µVT) are
denoted by brackets ⟨·⟩, V is the volume, Ni the number of
particles of species i, δi j is the Kronecker delta, and gµVT

i j (r)
is the pair distribution function in the µVT ensemble. For
finite systems, however, a reasonable approximation leads to
gµVT
i j (r) ≈ gNVT

i j (r) with gNVT
i j (r) being the pair distribution

function in the canonical (NVT) ensemble. For big system
sizes this is nearly almost (always) a safe approximation and
thus leading to

Gi j(r) = 4π
 r

0


gNVT
i j (r ′) − 1


r ′2dr ′

= Ci j(r) − 4
3
πr3. (5)

Here the second term in the last line is a volume correction to
Ci j(r). Therefore, the quantity Gi j(r) is also referred to as the
excess-coordination, which could be connected to solvation

properties of multi-component mixtures.19,27,34 Therefore, we
not only need the precise estimate of g(r) but also correct
Gi j. This presents a need for an improved protocol that can
correctly reproduce pair-wise coordination and the solvation
properties. Thus we propose coordination iterative Boltzmann
inversion (C−IBI). Here also, the initial guess is the same as
in Eq. (2). However, the iterative protocol is modified to target
Ci j(r) given by

VC−IBI
n (r) = VC−IBI

n−1 (r) + kBT ln


Cn−1
i j (r)
Ctarget
i j (r)


. (6)

A cutoff distance for Ci j(r) is chosen to be 1.5 nm, which is
typically of the order of the correlation length of water-based
molecular fluids. The advantage of using Eq. (6), unlike the
IBI protocol, is that it presents equal weightage at every r
value and, therefore, corrects Ci j(r) at every r points precisely.
Furthermore, because C(r) is exactly reproduced using Eq. (6),
it also exactly reproduces g(r). In Fig. 1(b) we present g(r)
obtained using the C−IBI protocol. While there is hardly any
visible distinction between g(r) obtained from C−IBI and the
reference all-atom simulations, we find a much improved first
shell coordination that shows ∼0.5% deviation and also an
improved tail convergence. A comparison of CG potentials
derived from both methods, IBI and C−IBI, is shown in
Fig. 2. It can be appreciated that the potentials derived from
the two methods are distinctly different even when they show
very similar g(r) (see Fig. 1), suggesting that a mere 25 IBI
iterations may not be sufficient to get the correct coordination
and, hence, the solvation properties.

It should be noted that the IBI protocol is the simplest
form of CG method that works exceedingly well for several
systems.8–10,17 The initial guess of V (r) in IBI is deduced from
the Boltzmann distribution and the subsequent corrections in
Eq. (3) are based on the difference in the distribution function
while ignoring the higher order correlations. Furthermore, IBI
can also be considered as IMC without cross correlation. In
this context, IMC6 can be derived from a thermodynamic
argument. In our C−IBI method, we choose the same initial
guess as the IBI (see Eq. (6)) and subsequent corrections

FIG. 2. Pair-wise coarse-grained (CG) potentials V(r ) between different
solvent pairs for a 6M aqueous urea derived using two different CG methods.
The solid lines present CG potentials derived from IBI and the symbols are for
the C−IBI protocol. Data is shown after 25 iterations within both protocols.
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FIG. 3. Kirkwood-Buff integrals Gi j(r ) between different solvent pairs for
a 6M aqueous urea mixture. The all-atom data are compared to the IBI and
C−IBI methods. The data is shown for a 25 ns long MD trajectory. The CG
simulations are performed with the potentials obtained in Fig. 2.

are based on the difference in C(r). Because of the nature
of C−IBI protocol, which aims to reproduce C(r), this
also tunes any irregularities that may cumulatively add up
to an error at large r values. Therefore, reproducing C(r)
automatically guarantees the reproduction of underlying g(r).
However, just targeting g(r) in an iterative procedure may
not give a precise estimate of C(r) and thus may lead to
unrealistic fluctuation, especially for the multi-component
fluids.

In Fig. 3 we present a comparative plot of Gi j(r) between
different solvent pairs. It can be seen that C−IBI shows a
reasonably satisfactory convergence to the reference all-atom
data, while IBI data show significant deviation, especially
between urea–urea and urea–water. Note that the values of
Gi j are calculated by taking the averages of Gi j(r) between
1 nm and 1.4 nm. In Fig. 4, we show Gi j between urea-
urea Guu and urea-water Guw. It can be appreciated that
the data from C−IBI CG model can closely reproduce Gi j

obtained from all-atom simulations. Note that we only show
the data for urea-urea and urea-water pairs, where urea is

FIG. 4. Kirkwood-Buff integrals between urea-urea Guu (a) and urea-water
Guw (b) as a function of molar concentration of urea cu. We present a
comparative plot of all-atom simulation, IBI and C−IBI methods. The data is
shown for a 25 ns long MD trajectory. The error bars are standard deviations
obtained from four simulation trajectories. Note that we only show Gi j

between the minor components of urea-urea and urea-water pairs that are
most effected by the CG protocol.

the minor species. For water-water KBI, both models give
reasonable agreement. Here it is important to mention that
a slight deviation of Gi j can result in a large deviation in
the particle fluctuation and thus leading to wrong solvation
thermodynamics. Therefore, in Sec. III B, we will show that
our method also gives a correct estimate of the solvation free
energy.

The summary of the first shell excess coordination and the
Gi j is presented in Tables I and II obtained from IBI and C−IBI
CG simulations and their comparison to the reference all-atom

TABLE I. A table showing comparative detail of the first shell excess coordination, obtained from all-atom (AA) simulations, iterative Boltzmann inversion
(IBI) and coordination iterative Boltzmann inversion (C−IBI). Results for IBI and C−IBI are shown for Niterations iterations. For 2M and 4M due to the lower
urea concentrations we perform a set of 10 IBI iterations before a set of C−IBI iterations. This specific choice is adequate to obtain a reasonably good first
estimate of the potential, before starting C−IBI. We also include data for a set of simulations where we use IBI derived CG potential after 125 iterations.

First shell excess coordination= 4π
 r0

0 g(r ′)r ′2dr ′−4πr3
0/3

Urea-urea (r0= 0.58 nm) Urea-water (r0= 0.48 nm) Water-water (r0= 0.32 nm)

cu (M) Niterations AA C-IBI IBI IBI-125 AA C-IBI IBI IBI-125 AA C-IBI IBI IBI-125

2 10 + 64 0.045 0.048 0.032 0.098 −0.036 −0.035 −0.034 −0.038 −0.011 −0.023 −0.026 −0.024
4 10 + 30 0.011 0.023 −0.009 −0.010 −0.033 −0.030 −0.030 −0.030 −0.005 −0.005 −0.004 −0.005
6 25 −0.013 −0.009 −0.033 −0.021 −0.034 −0.032 −0.021 −0.026 −0.002 −0.001 0.004 0.002
8 15 −0.039 −0.033 −0.029 −0.030 −0.018 −0.017 −0.015 −0.015 0.011 0.012 0.012 0.010
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TABLE II. Same as Table I, but for Kirkwood-Buff integrals (or excess coordination) Gi j.

Gi j

Urea-urea Urea-water Water-water

cu (M) Niterations AA C-IBI IBI IBI-125 AA C-IBI IBI IBI-125 AA C-IBI IBI IBI-125

2 10 + 64 0.006 0.028 −0.037 0.288 −0.081 −0.082 −0.072 −0.105 −0.023 −0.023 −0.024 −0.020
4 10 + 30 −0.008 0.019 −0.078 −0.092 −0.088 −0.093 −0.067 −0.067 −0.015 −0.015 −0.021 −0.020
6 25 −0.053 −0.075 −0.135 −0.076 −0.079 −0.073 −0.039 −0.073 −0.015 −0.016 −0.022 0.012
8 15 −0.089 −0.078 −0.095 −0.099 −0.065 −0.068 −0.061 −0.057 −0.009 −0.007 −0.012 −0.012

data. It can be seen that for the same number of iterations
of both protocols, C−IBI gives much better estimates of the
quantities than the standard IBI. It should be noted that the
Gi j and C f

i j are related to the volume around a given molecule.
Therefore, smaller molecules also lead to smaller Gi j and C f

i j

values, making them highly sensitive to simulation protocol.
Considering this, our C−IBI method seems to be working
exceedingly well for the fluid mixtures. Furthermore, C−IBI
also shows faster convergence than the IBI protocol. For the
6M aqueous urea mixture (see Fig. 3), we get a reasonable
convergence within 25 iterations of C−IBI, which otherwise
is not possible even after 125 iterations of IBI. In Tables I
and II we also include IBI data after 125 iterations. A careful
look on the tables also shows that neither Gi j nor the first
shell excess coordination is correctly reproduced within the
IBI protocol irrespective of the number of iterations, certainly
not both quantities at the same time. However, C−IBI almost,
always reproduces both these quantities within reasonable
accuracy.

Furthermore, it should also be noted that for the smaller
concentrations of urea, namely for 2M and 4M, we first run
a set of 10 iterations of IBI, with 1 ns each step, followed
by a certain number of C−IBI iterations. This procedure
was performed to obtain a reasonable guess for the initial
potential in Eq. (2), especially for the urea-urea pairs. Note
that the convergence of g(r) for large r values are highly
sensitive for multi-component systems, especially when one
of the solvent components present at low concentrations.19,23

Additionally, we also want to point out that for the smallest
urea concentrations, namely 2M and 4M, IBI almost never
gives any reasonable estimate of Gi j and C f

i j. For example,
in Table II and in Fig. 4, it can be appreciated that the
urea-urea and urea-water KBIs using IBI CG models show
large deviations from their all-atom data. Thus suggesting that
IBI, despite giving after some iterations a reasonable starting
potential guess, may still not be a suitable scheme to obtain
reasonable fluctuations, especially when one of the solvent
components is in low concentrations.

We would also like to point out that the C−IBI CG
potentials are obtained without incorporating any adjustable
pre-factors in the second term of Eq. (6). There are
related methods that aim to reproduce KBI of binary35 and
ternary mixtures.36 This method makes use of a pressure-
like10 KBI-based ramp correction. The advantage of ramp
correction protocol is that it can be used to tune any
thermodynamic property within a simplified protocol, such
as the pressure, KBI and/or surface tension. However, a

ramp correction usually requires a careful tuning of the pre-
factor. Furthermore, while the ramp corrections can be used
to tune a particular property of interest, it often sacrifices
other properties. For example, when pressure corrections
are applied to a system, it sacrifices fluid compressibility.10

Therefore, the parameter free C−IBI is a protocol that, by
construction, reproduces coordination, excess coordination,
pair-wise solution structure, and thus the solvation free
energies. Furthermore, because of the structure based nature
of the C−IBI method, transferability is almost impossible
over a wide range of concentrations. This is because when
CG potentials are derived at two concentrations of urea, these
two potentials only give precise thermodynamic properties
on those two concentration state points. The use of these
potentials in between concentrations often lead to inconsistent
results. Therefore, the structure based CG protocols (such as
C−IBI method) is thermodynamically consistent, but presents
no concentration transferability. Moreover, when dealing with
phase transition by changing temperature, one can use the

FIG. 5. Relative error ∆gn for a 6M aqueous urea solution obtained over
coarse-graining iterations n. ∆gn measures the difference between the target
radial distribution function gtarget(r ) and the pair distribution per iterations
gn(r ), obtained over coarse-graining iterations. Solid symbol are obtained
from IBI and the open symbols represent C−IBI. Data are shown for urea-
urea in (a), urea-water in (b), and water-water in (c).
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method proposed in Ref. 37 in conjunction withC−IBI method
and thus presenting a possibility of obtaining temperature
transferable CG model with C−IBI protocol. Furthermore,
the pressure of the CG model derived using C−IBI remains
around 5000 bars, a typical shortcoming of the almost all
CG models. In Sec. III B, we will show how a slight
change in Gi j, as reported in the Table II, can lead to a
large, unphysical, deviations in the reference thermodynamic
properties.

Lastly in this section we also want to comment on the
convergence of g(r) in the C−IBI scheme and the IBI scheme.
For this purpose, we calculate the relative error ∆gn between
gtarget(r) and gn(r) after every iterations n, given by

∆gn =

 [gtarget(r) − gn(r)]2dr
gtarget(r)dr

. (7)

In Fig. 5 we present ∆gn. It can be appreciated that the C−IBI
converges much faster than the IBI. Furthermore, in both, IBI
and C−IBI corrections, the convergence of one pair always
disturbs the convergence of others. However, we not only find
that C−IBI converges faster but also that they present much
less structural fluctuations (see Fig. 5). More interestingly,
we find that a reasonable structure can be obtained from
almost very beginning of the C−IBI protocol, and any further
iterations are performed to get a reasonable convergence of
the tail of g(r) so that the model can reproduce correct
fluctuations.

B. Solvation thermodynamics

1. Activity coefficient of aqueous urea

Solvation of a urea (u) molecule in the mixtures of water
(w) and urea can be calculated using the expression27

γuu = 1 +
(
∂ ln γu
∂ ln ρu

)
p,T

=
1

1 + ρu (Cuu − Cuw) , (8)

FIG. 6. γuu as a function of urea molar concentration cu (see Eq. (8)).
We present comparative data obtained using different coarse-grained method,
all-atom reference system, and experiments. The data set corresponding to
experiment 1 is taken from Ref. 38 and experiment 2 is taken from the Ref. 39,
respectively.

where γu is the molar cosolvent activity coefficient, µu
= kBT ln γu is the cosolvent chemical potential, the urea
number density is ρu, Cuu is the urea-urea coordination
number and Cuw is the urea-water coordination. In Fig. 6 we
present γuu as a function of cu. The data corresponding to
C−IBI matches nicely with the all-atom reference system25

and both data sets follow a similar trend as the experimental
data set 1.38 Furthermore, the IBI derived CG models
(irrespective of the number of iterations) show a rather
random variation in γuu. Fig. 6 also shows that C−IBI is
a particularly powerful method over the full range of cu,
while the standard IBI CG models only give a slightly better
estimate for large cu and for 125 iterations of IBI. Note
that while the convergence of the tail of g(r) is a grand
challenge within an iterative procedure, C−IBI appears to
be a much better alternative within a reasonable number of
iterations.

2. Solvation free energy of triglycine in aqueous
urea

So far we have presented results for the aqueous urea
mixtures. In this section, we focus on reproducing the solvation
properties of a triglycine in aqueous urea within our C−IBI
protocol. For this purpose, we simulate one triglycine in a box
containing water and urea with varying cu as described earlier
in the method section. For the CG model, we map the full
triglycine molecule onto one CG bead. Furthermore, as in the
cases of 2M and 4M aqueous urea mixtures, we first perform an
initial set of 25 IBI iterations, followed by 30 C−IBI iterations.
This is again motivated by the fact that we want to have a
reasonable initial guess for the potential (see Eq. (2)). Here,
however, every iteration consists of a 10 ns MD trajectory.

FIG. 7. Derivative of triglycine solvation free energy ∂∆Gt/∂xu, as shown
in Eq. (9), as a function of urea mole fraction xu. Note here we use urea
mole fraction, instead of urea molar concentration cu, in the abscissa to be
consistent with the Eq. (9). We present data for the all-atom simulations and
from C−IBI models. For comparison we also include data from Ref. 25,
which were obtained using a hybrid multiscale method. In the inset we
present the variation of shift in solvation energy of a triglycine ∆Gt with cu.
Note that we only restrict our data in the inset till cu = 6.0M concentration
of urea, because the experimental data is only available at around this cu
value. Straight lines are the linear fits to the data with the slopes listed in
Table III.
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TABLE III. A comparative table showing m−value= ∂∆Gt/∂cu obtained
from the linear fits to the data in the inset of Fig. 7. The results are
shown for all-atom simulations, C−IBI model, previous simulations,25 and
experimental data.40 Note that while the experimental data are usually pre-
sented in kJ mol−2 L, the energy unit in our simulations is kBT . There-
fore, for better representability we provide the m−value in both these
units.

m−value

kBT mol−1 L kJ mol−2 L

All-atom simulation −0.225 −0.557
C−IBI simulation −0.175 −0.433
Simulation Ref. 25 −0.198 −0.492
Experiment Ref. 40 −0.197 −0.489

Note that we deliberately chose single triglycine molecules, to
test the robustness of our method under extreme CG simulation
conditions.

When a triglycine t at infinite dilution (ρt → 0) is
dissolved in an aqueous urea solution, the shift in the solvation
free energy of triglycine (∆Gt) is given by34

lim
ρt→0

(
∂∆Gt
∂xu

)
p,T

=
kBT(ρw + ρu)2

η
(Ctw − Ctu) , (9)

where xu is the urea mole fraction, kB is the Boltzmann
constant, η = ρw + ρu + ρwρu (Cww + Cuu − 2Cuw) is the
preferential solvation parameter, and ρi is the number density
of the ith component of the aqueous solutions. In Fig. 7
we present ∂∆Gt/∂xu as a function of xu. C−IBI gives a
reasonably good agreement with the all-atom data, while the
data corresponding to the IBI CG model after 60 iterations
did not show any visible convergence of Ctw and Ctu that
could be used to obtain a reasonable estimate of the solvation
energy. Furthermore, we do not only get a reasonable estimate
of ∂∆Gt/∂xu but also for different Gi j components in Eq. (9),
i.e., Ctw, Ctu, and η.

Integration of Eq. (9) gives the direct measure of the shift
in solvation energy ∆Gt with urea concentration. In the inset
of Fig. 7 we show the variation of ∆Gt with cu. The slope
of the linear fit to the data in the inset of Fig. 7 gives the
direct measure of the “so called” m−value, which is defined as
∂∆Gt/∂cu. Additionally, the m−value can be efficiently used
to make a reasonable comparison between simulation and
experimental observations. In Table III, we present m−values
of a triglycine obtained from different methods. A reasonably
good agreement between C−IBI, all-atom simulations and
experiments suggest that the method can be used for any
multi-component complex fluids.

IV. CONCLUSION

We have presented a parameter free coarse-graining
(CG) strategy for complex mixtures. Our method uses
cumulative coordination as a target function within an
iterative protocol. We name our method C−IBI. C−IBI
method not only gives a correct estimate of the pair-wise
coordination but also by construction gives a good estimate

of the solvation thermodynamics. More specifically, our CG
method correctly reproduces both—energy density within the
solvation volume and the local concentration fluctuations.
Additionally, C−IBI shows much faster convergence with
respect to the standard iterative Boltzmann inversion (IBI).
We have used C−IBI derived CG potentials to study aqueous
urea mixtures and the solvation of a small peptide in
aqueous urea. The method presents a new, simplified, CG
protocol and thus can be further used to study more complex
(bio-)macromolecular systems, especially in mixed solvent
environment.
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APPENDIX: C–IBI AS AN EXTENSION IN VOTCA

C−IBI method is implemented as an extension of the
VOTCA package20 that requires certain additional lines,
presented in Fig. 8, to be included within the settings file
to perform C−IBI iterations.

FIG. 8. A schematic showing part of the script that is required within the
settings file for the C−IBI iterations.
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