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Abstract

Water is one of the most frequently studied fluids on earth. In this thesis,
water was investigated at two resolutions using multi-scale computer simu-
lation techniques. First, the atomistic and coarse-grained resolutions were
studied separately. In the atomistic resolution, a water molecule is described
chemically by three atoms, while in the coarse-grained case, a molecule is
modeled by a sphere.

In this work, various coarse-grained models have been developed using
different coarse-graining techniques, mainly iterative Boltzmann inversion
and iterative inverse Monte Carlo, which are structure-based approaches that
aim to reproduce distributions, such as the pair distribution functions, of the
atomistic model. In this context the Versatile Object-oriented Toolkit for
Coarse-graining Applications (VOTCA) was developed.

It was studied to which extent the coarse-grained models can simultane-
ously reproduce several properties of the underlying atomistic model, such
as thermodynamic properties like pressure and compressibility or structural
properties, which have not been used in the coarse-graining process, e. g. the
tetrahedral packing behavior, which is responsible for many special properties
of water.

Subsequently, these two resolutions were combined using the adaptive res-
olution scheme, which combines the advantage of atomistic details in a small
cavity of high resolution with the computational efficiency of the coarse-
grained model in order to access larger time and length scales. In this scheme,
the introduced coarse-grained models were used to study the influence of the
hydrogen bonds on the hydration of small fullerenes. It was found that the
interface structure is more dependent on the nature of the interaction be-
tween the solute and water molecules than on the presence of the hydrogen
bond network.
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Zusammenfassung

In der vorliegenden Arbeit werden verschiedene Wassermodelle in sogenan-
nten Multiskalen-Computersimulationen mit zwei Auflösungen untersucht, in
atomistischer Auflösung und in einer vergröberten Auflösung, die als “coarse-
grained” bezeichnet wird. In der atomistischen Auflösung wird ein Wasser-
molekül, entsprechend seiner chemischen Struktur, durch drei Atome be-
schrieben, im Gegensatz dazu wird ein Molekül in der coarse-grained Auflös-
ung durch eine Kugel dargestellt.

Die coarse-grained Modelle, die in dieser Arbeit vorgestellt werden, wer-
den mit verschiedenen coarse-graining Methoden entwickelt. Hierbei kom-
men hauptsächlich die “iterative Boltzmann Inversion” und die “iterative
Monte Carlo Inversion” zum Einsatz. Beides sind struktur-basierte Ansätze,
die darauf abzielen bestimmte strukturelle Eigenschaften, wie etwa die Paar-
verteilungsfunktionen, des zugrundeliegenden atomistischen Systems zu re-
produzieren. Zur automatisierten Anwendung dieser Methoden wurde das
Softwarepaket “Versatile Object-oriented Toolkit for Coarse-Graining Appli-
cations” (VOTCA) entwickelt.

Es wird untersucht, in welchem Maße coarse-grained Modelle mehrere
Eigenschaften des zugrundeliegenden atomistischen Modells gleichzeitig re-
produzieren können, z.B. thermodynamische Eigenschaften wie Druck und
Kompressibilität oder strukturelle Eigenschaften, die nicht zur Modellbil-
dung verwendet wurden, z.B. das tetraedrische Packungsverhalten, welches
für viele spezielle Eigenschaft von Wasser verantwortlich ist.

Mit Hilfe des “Adaptive Resolution Schemes” werden beide Auflösungen
in einer Simulation kombiniert. Dabei profitiert man von den Vorteilen
beider Modelle: Von der detaillierten Darstellung eines räumlich kleinen
Bereichs in atomistischer Auflösung und von der rechnerischen Effizienz des
coarse-grained Modells, die den Bereich simulierbarer Zeit- und Längenskalen
vergrössert.

In diesen Simulationen kann der Einfluss des Wasserstoffbrückenbind-
ungsnetzwerks auf die Hydration von Fullerenen untersucht werden. Es zeigt
sich, dass die Struktur der Wassermoleküle an der Oberfläche hauptsächlich
von der Art der Wechselwirkung zwischen dem Fulleren und Wasser und
weniger von dem Wasserstoffbrückenbindungsnetzwerk dominiert wird.
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Overview

The main topics of this thesis are simulation models of water studied at
different resolutions. Several publications have been produced during that
time, which can be found on the next page.

The work started with Ref. [1], in which an extension of the DPD thermo-
stat is discussed and coarse-grained water is used as an example in Ref. [2].
With this the interest to understand the fundamentals behind coarse-grained
water models increased. Hence, different models were compared in detail in
Ref. [3]. In this comparison only one coarse-graining technique was used, for
that reason a systematic study of 3 different techniques was done in Ref. [4]
producing a coarse-graining toolkit as a useful side effect.

With this zoo of coarse-grained water models adaptive resolution simula-
tions, which are described in detail in Ref. [5], have been done. To this end,
this scheme was implemented in two simulation packages, whose technical
questions have been addressed in Ref. [6]. Finally, the adaptive resolution
scheme was used to study the solvation of fullerenes in Ref. [7].

This thesis tells the details of the story. After a short introduction to
multi-scale techniques, the adaptive resolution scheme and coarse-graining in
chapter 1, theoretical backgrounds are explained in chapter 2 starting with
molecular dynamics and Fokker-Planck theory followed by details about dif-
ferent coarse-graining techniques and the adaptive resolution scheme. After
that the results of the studies described above are explained in detail in the
last two chapters, first from the coarse-grained perspective in chapter 3 and
then from the multi-scale view obtained by the adaptive resolution scheme
in chapter 4. The conclusion and an outlook can be found in chapter 5.
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Chapter 1

Introduction

Water is one of the most studied liquids due to its common appearance
and general importance, but despite its chemical simplicity, it is still not
adequately understood. Over the years, simulations have gained increasing
attention in the attempt to provide a better understanding of water as a liq-
uid as well as a solvent [8, 9]. Many different classical simulation models have
been developed, which enable different features of water to be captured. Den-
sity functional theory can partially reproduce electronic structures of water
in bulk and close to certain metal surfaces [10]. Molecular dynamics (MD)
simulations can give further insight, e. g. into the role of water during protein
folding [11]. On a much larger, not solely particle-based scale, approaches like
the lattice Boltzmann method [12] or dissipative particle dynamics (DPD)
simulations [13] are employed to describe hydrodynamic effects. DPD sim-
ulations are used to give qualitative insight into the behavior of clusters of
particles, so called DPD particles. The lattice Boltzmann method discretizes
the fluid to the nodes of a lattice and hence the lattice constant determines
the modeled length scale. These descriptions of water take place on signifi-
cantly different scales, so called resolutions, which are described by different
physical laws.

Nevertheless, simulations on different scales, not only for water but also
for systems in condensed matter, chemistry and material science, are becom-
ing a standard procedure. The fast progress of computer technology and the
concurrent development of novel, powerful simulation methods has strongly
contributed to this expansion. This has led to the situation that detailed se-
quential studies from the electronic scale to the mesoscopic scale and even to
the continuum can be performed nowadays. However, sequential approaches
do not couple scales in a direct way. Their central idea is to employ results
from one scale to build simplified models in a physically consistent fashion,
keeping the modeling approximations under control as much as possible. And

5



CHAPTER 1. INTRODUCTION

Figure 1.1: Modeling on different scales: An illustration of simulation models on
different scales using different level of resolution. Picture taken from Ref. [14].

then using this simplified model in a separate stage on much bigger systems.
An example of a hierarchy of different simulation models can be found in
fig. 1.1. This is where multi-scale techniques enter the game.

1.1 Multi-scale techniques

A step beyond these sequential schemes is represented by approaches, where
the scales are coupled in a concurrent fashion within a unified computational
scheme. For problems like edge dislocation in metals, cracks in solid ma-
terials or simulations of organic electronics, the local chemistry affects large
scale material properties and vice versa. These are typical questions to which
the idea of concurrent scale methods has been applied. In these cases, quan-
tum based methods are interfaced with classical atomistic and continuum
approaches within a single computational scheme [15, 16, 17].

A further example is the Quantum Mechanics - Molecular Mechanics
scheme (QMMM) [18], which is mainly used for soft matter systems. It is
based on the idea that a fixed subsystem is described with a quantum reso-
lution while the remainder of the system is treated at the classical atomistic
level. A typical example of an application of the QMMM method is the
study of the solvation process of large molecules. For this specific exam-
ple the interesting chemistry happens locally within the region defined by
a few solvation shells. Thus, it is treated at a quantum level while the sta-

6
Rev. 292(e47a2e8ad7a2) from 2012-02-25



1.2. ADAPTIVE RESOLUTION SCHEME

tistical/thermodynamical effect of the fluctuating environment (solvent) far
from the molecules is treated in a rather efficient way at a classical level.
There are several more examples in the same fashion [19, 20].

All of these methods, although computationally robust, are characterized
by a non-trivial conceptual limitation, i. e. the region of high resolution is
fixed and thus the exchange of particles among the different regions is not al-
lowed. While this may not be crucial for hard matter, it is certainly a strong
limitation for soft matter, i. e. complex fluids, since relevant density fluctu-
ations are suppressed. The natural step forward to overcome this problem
is to design adaptive resolution methods, which allow for the exchange of
particles among regions of different resolution.

In general, in such a scheme a molecule moving from a high resolution
region to a lower one would gradually lose some degrees of freedom until
the lower resolution is reached and yet the statistical equilibrium among the
two different regions is maintained at any instant. Recently some schemes
based on this idea, for classical MD, have been presented in literature, where
forces [21], potentials [22] or Lagrangians [23] are interpolated between the
two resolutions. They are based on different conceptual approaches regard-
ing the way the scales are coupled and the way the equilibrium of the over-
all system is assured, their details will be discussed in sec. 2.4. Now the
adaptive resolution scheme (AdResS), which interpolates the forces, will be
introduced.

1.2 Adaptive Resolution Scheme

As stated before, many problems in condensed matter, material science and
chemistry are multi-scale in nature, meaning that the interplay between ef-
fects on different scales plays the fundamental role for the understanding of
relevant properties. An exhaustive description of the related physical phe-
nomena requires in principle the simultaneous treatment of all the scales
involved. This is not only a prohibitive task because of the limited compu-
tational resources but above all because the large amount of produced data
would mostly contain information not essential to the problem analyzed and
may overshadow the underlying fundamental physics or chemistry of the sys-
tem.

A solution to this problem is to treat only those degrees of freedom in
a simulation, which are strictly required by the problem. In the AdResS
method the combination of all-atom classical MD and coarse-grained MD
leads to a hybrid scheme where the molecule can adapt its resolution, passing
from an all-atom to a coarse-grained representation when going from the high

Rev. 292(e47a2e8ad7a2) from 2012-02-25
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CHAPTER 1. INTRODUCTION

resolution region to the lower one and vice versa. Thus, the method allows
the molecules to change their number of degrees of freedom on the fly in
a continuous manner. In this way the limitation to small time and length
scales in the all-atom approach is overcome due to the fact that only a limited
region is treated with atomistic degrees of freedom. This region, which can
vary in space and time, is treated with atomistic degrees of freedom, while the
remaining part of the system is treated in the coarse-grained representation.
Thus, the atomistic details are lost in the coarse-grained part, but those
degrees of freedom relevant to the particular property under investigation
are retained. In this way one can reach much larger length and time scales
and still describe the system with high resolution, where strictly required.

The drawback of the method is that one has to develop a coarse-grained
model first, which on one hand has to be simpler and more efficient, but on
the other hand has to retain some of the properties of the atomistic system.
However, in some cases a very simple coarse-grained model, e. g. a Lennard-
Jones fluid, is already sufficient.

1.3 Coarse-Graining

Bottom-up coarse-graining [24] is used to provide such a systematic link
between these levels of description. Bottom-up means that knowledge from
the more detailed system is used to develop the coarse-grained model. In
this thesis, different coarse-grained models will be studied, which conserve
first the structural properties, namely the radial distribution function g(r),
and second, other properties such as pressure, compressibility or tetrahedral
packing.

For MD simulations on the coarse-grained level alone, so called coarse-
grained MD [25] can be performed, where each molecule is represented by
a set of coarse-grained beads, and can reproduce parts of the structure. Of
course, some properties of the atomistic system are lost, but a significant
speed up can be achieved due to a smaller number of degrees of freedom,
smoother potentials and larger time steps. Many examples for such models,
from polymer melts over water to lipid bilayers and small peptides can be
found in the literature [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

8
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Chapter 2

Theory & Simulation Methods

In this chapter, the simulation methods employed and their theoretical back-
ground are described. As the main aim of this work is to understand prop-
erties of water on different scales, one first considers the molecular dynamics
and the thermostats, due to the fact that these methods are used for both,
atomistic and coarse-grained simulations. The section about thermostats will
be more detailed to allow for the introduction and understanding of a novel
thermostat.

Subsequently, some attention is given to the derivation of coarse-grained
force fields on the basis of a reference system, which is an atomistic system
here. With this knowledge, one can then discuss the adaptive resolution
scheme, which couples the atomistic and the coarse-grained representations
within one simulation. With these methods at hand we will be able to un-
derstand some effects of water on two different scales of resolution even when
these are coupled.

However, when writing this thesis, already around 300 books [38] with
“computer simulations” and 450 books [39] with “molecular dynamics” in
their titles have been composed. Therefore, the theory in this chapter is
reduced to a bare minimum, essential to understand the context and the
novel facts.

2.1 Molecular Dynamics

Basically, molecular dynamics is an algorithm to integrate Newton’s equa-
tion of motion. In this section, the velocity Verlet algorithm, which is the
most commonly used integration scheme in molecular dynamics, is derived
by expansion of this equation. Later, we will see that one can derive the
same algorithm from a Fokker-Planck picture.
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CHAPTER 2. THEORY & SIMULATION METHODS

2.1.1 Newton’s Equation of Motion

The fundamental equation in classical mechanics is

m~̈r = ~F , (2.1)

which is known as Newton’s equation of motion, with ~r being the position
of a particle of mass m, and ~F the force acting on that particle. Difficulty
arises when there is more than one particle present and the force must be
determined by all the surrounding particles:

mi~̈ri = ~Fi(~r1, ~r2, . . . , ~rN−1, ~rN) (2.2)

For convenience, one can write this as two coupled first-order differential
equations:

~̇ri =
~pi
mi

(2.3)

~̇pi = ~Fi (2.4)

If the force is integrable, i. e. there is a potential, Newton’s Equation con-
serves energy and can be rewritten as the Hamilton equations :

~̇ri =
∂H
∂~pi

, (2.5)

~̇pi = −∂H
∂~ri

, (2.6)

where H is the Hamiltonian, which is in most cases identical to the en-
ergy [40]. These equations generate a micro-canonical ensemble (NVE).

2.1.2 Velocity Verlet Algorithm

The velocity Verlet algorithm is an integration algorithm, which is accurate
up to cubic order in the time step ∆t.

A Taylor expansion of eq. 2.3 and eq. 2.4 will lead to

~ri(t+∆t) = ~ri(t) +
∆t

mi

~pi(t) +
∆t2

2mi

~Fi(t) +O(∆t3) , (2.7)

~pi(t+∆t) = ~pi(t) + ∆t ~Fi(t) +
∆t2

2
~̇Fi(t) +O(∆t3) . (2.8)

As ~̇Fi(t) is unknown one expands:

~Fi(t+∆t) = ~Fi(t) + ∆t ~̇Fi(t) +O(∆t2) , (2.9)
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2.2. THERMOSTATS

Calculate ~ri(t + ∆t) from ~pi(t) and ~Fi(t)

Calculate ~Fi(t + ∆t) from all ~rj(t + ∆t)

Calculate ~pi(t + ∆t) from

~pi(t), ~Fi(t) and ~Fi(t + ∆t)

Figure 2.1: Velocity Verlet algorithm: The computational steps of the algorithm, using
equations 2.11 and 2.12. The third step can become tedious if the forces depend on the
velocities as well.

and arrives at:

∆t2 ~̇Fi(t) =
(

~F (t+∆t)− ~Fi(t)
)

∆t+O(∆t3) (2.10)

With this the velocity Verlet algorithm results in:

~ri(t+∆t) = ~ri(t) +
∆t

mi

~pi(t) +
∆t2

2mi

~Fi(t) +O(∆t3) , (2.11)

~pi(t+∆t) = ~pi(t) +
∆t

2

(

~Fi(t) + ~Fi(t+∆t)
)

+O(∆t3) (2.12)

It is important to note that eq. 2.12 has to be solved in an iterative manner
if ~Fi depends on the velocities as well.

From this derivation one can see why the velocity Verlet algorithm is
correct up to order ∆t2, but one can not prove easily why this algorithm is
symplectic. A symplectic integrator is defined as being time-reversible and
phase-space volume conservative, where the latter property is more demand-
ing to prove and we will not show it at this point as this follows for free from
the derivation done in sec. 2.2.2.1.

2.2 Thermostats

In the previous section, the fundamental equations of molecular dynamics
have been explained and we have shown how the velocity Verlet algorithm
follows from Newton’s equations. Basically, this provides the possibility of
simulating a micro-canonical ensemble.
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In this section, we will derive the same algorithm from a different perspec-
tive, the Fokker-Planck picture, which gives understanding to why it is phase
space volume conserving and time-reversible, which makes it a symplectic in-
tegrator. In this picture, it is also easy to switch to different equations of
motion, which allow the sampling at different ensembles. These additions to
Newton’s equations are called thermostats. It is important to note that not
all thermostats generate a canonical ensemble, but a comparable useful en-
semble such as an iso-kinetic ensemble. First we will derive the Fokker-Planck
equation from general principles and then we will add stochastic terms to the
equations of motion to introduce Langevin thermostats.

2.2.1 Fokker-Planck Picture

Let us consider a process defined on a state space Γ with state points ~X.
These state points can be related to the common mechanical phase space
{~xi, ~pi} or to the phase space {~xi} of an over-damped Brownian motion.

Assuming we know some points ~X(ti) = ~Xi of the trajectory of this process,

one could ask for the conditional probability density to arrive at point ~Xn

under the condition that the process has passed through ~Xj with j = 1 . . . n−
1:

P ( ~Xn, tn, ~Xn−1, tn−1, . . . , ~X2, t2, ~X1, t1) (2.13)

It is clear that in the case of a deterministic process the probability density
will always be a δ-function of the deterministic trajectory, but we also have
to keep random processes in mind. Under the assumption that the process
is Markovian, the conditional probability simplifies to

P ( ~Xn, tn| ~Xn−1, tn−1) , (2.14)

due to the fact that the Markov processes have “no memory”. This assump-
tion is reasonable as long as there are no long correlation times involved.

The conditional probability has certain natural properties:

• Normalization
∫

d ~X P ( ~X, t| ~X0, t0) = 1 (2.15)

• Initial condition
P ( ~X, t0| ~X0, t0) = δ( ~X − ~X0) (2.16)

• Decomposability (Chapman-Kolmogorov equation)

P ( ~X3, t3| ~X1, t1) =

∫

d ~X2 P ( ~X3, t| ~X2, t2)P ( ~X2, t2| ~X1, t1) (2.17)
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All information about the conditional probability is basically stored in its
moments:

µν(t, ~X0, t0) =

∫

d ~X ( ~X − ~X0)
νP ( ~X, t| ~X0, t0) (2.18)

If all moments exist and are not infinite, one can invert this equation with
the help of a Fourier transformation [41]:

P ( ~X, t| ~X0, t0) =
∞
∑

ν=1

1

ν!
µν(t, ~X0, t0)

(

− ∂

∂ ~X

)ν

δ( ~X − ~X0) (2.19)

After inserting this into eq. 2.17 and differentiating with respect to t, one
obtains the Generalized Fokker-Planck equation

∂

∂t
P ( ~X, t| ~X0, t0) =

∞
∑

ν=1

(

− ∂

∂ ~X

)ν

Dν( ~X, t)P ( ~X, t| ~X0, t0) , (2.20)

where Dν( ~X, t) are the Kramers-Moyal coefficients

Dν( ~X, t) =
1

ν!

∂

∂τ
µν(t+ τ, ~X, t)

∣

∣

∣

∣

τ=0

= lim
τ→0

< ( ~X − ~X0)
ν >

τν!

= lim
τ→0

< (∆ ~X)ν >

τν!
, (2.21)

where < > is the thermodynamic average defined by eq. 2.18. A much more
detailed derivation can be found in the book of Risken [41], which only has
the Fokker-Planck equation as its topic.

The first coefficient (ν = 1) is called the drift coefficient, while the second
coefficient (ν = 2) is known as the diffusion coefficient. As the time change
τ tends to 0, these coefficients are given by the short-time behavior of the
system, i. e. short in comparison to the slow degrees of freedom of the system.
This formula should not be confused with the diffusion constant determined
from the long-time behavior (see eq. 2.79), where the time change ∆t is large
in comparison to the fast degrees of freedom that are not explicitly taken
into account.

For convenience one can rewrite the Fokker-Planck equation (see eq. 2.20)
as:

∂

∂t
P ( ~X, t| ~X0, t0) = iLP ( ~X, t| ~X0, t0) , (2.22)

which defines the Fokker-Planck operator L. In case of a homogeneous pro-
cess, i. e. when Dν does not depend on t, the formal solution to the Fokker-
Planck equation is simply:

P ( ~X, t| ~X0, t0) = eiL(t−t0)δ(x− x0) = T δ(x− x0) (2.23)
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Here, we basically moved all of the difficulty into the time-evolution operator

T . Due to its exponential form, this operator has in the case of Hamiltonian
dynamics several beneficial properties:

• Time-reversibility: ∆t = (t− t0) → −∆t: T → T −1

• Conservation of phase space volume: T is unitary1

Therefore, a operator splitting of T will always lead to a symplectic integra-
tor due to the fact that time-reversibility and conservation of phase space
volume is defining symplecticity. We will show later that such a splitting
of the deterministic Fokker-Planck operator will lead to the velocity Verlet
algorithm.

2.2.1.1 Pawula Theorem

At this point, there is only one important connection between the Kramers-
Moyal coefficients missing, namely the Pawula Theorem:

If for some ν, one has Dν = Dν+1 = . . . = 0, then one also has
D3 = D4 = . . . = 0

The proof is not very difficult and simply uses the fact that the averaging < >
in the Kramers-Moyal coefficients (see eq. 2.21) can be used as a weighted
scalar product of the L2 Hilbert space with P as weighting function. There-
fore, one can make use of the Cauchy-Schwarz inequality to derive a recursion
for the Kramers-Moyal coefficients Dν( ~X, t).

However, the conclusions one can draw are very important. Basically,
there exist only four kind of Fokker-Planck processes:

• No dynamics: D1 = D2 = . . . = 0

• Deterministic dynamics: D2 = D3 = . . . = 0

• Standard Fokker-Planck process: D3 = D4 = . . . = 0

• Non-trivial dynamics: all Dk 6= 0

The last case applies for all real world examples, but is not considered here as
it can be approximated in most cases as a standard Fokker-Planck process.

1 This is not completely trivial, one still has to show that L is self-adjoint in the Hilbert
space, where the averaging < > is used as a weighted scalar product.
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2.2.2 Deterministic Dynamics

It is not obvious that the case D2 = D3 = . . . = 0 is really a deterministic
case that is why we look into that in detail for Hamiltonian dynamics. First
we calculate the drift coefficient of Newton’s equations, eq. 2.3 and eq. 2.4

D1( ~X, t) = lim
τ→0

< ∆ ~X >

τ
= lim

τ→0

~̇X(t)τ +O(τ 2)

τ
= ~̇X(t) , (2.24)

which are just the velocity and the acceleration of all particles written as one

vector ~̇X = {~̇xi, ~̇pi}. Furthermore, it is known that a deterministic process
has the probability distribution

P ( ~X, t| ~X0, t0) = δ(~Y (t)− ~X) , (2.25)

where ~Y (t) is the trajectory with the initial condition ~Y (t0) = ~X0, which is
generated by Newton’s equations of motion. Finally, one can show that this
solution obeys the Fokker-Planck equation:

∂

∂t
P ( ~X, t| ~X0, t0) =

∂

∂t
δ(~Y (t)− ~X)

= −~̇Y (t) · ∂

∂ ~X
δ(~Y (t)− ~X)

= − ∂

∂ ~X
·
[

~̇Y (t)δ(~Y (t)− ~X)
]

= − ∂

∂ ~X
·
[

D1(~Y (t), t)δ(~Y (t)− ~X)
]

= − ∂

∂ ~X
·
[

D1( ~X, t)δ(~Y (t)− ~X)
]

(2.26)

After this proof, we can write down the Fokker-Planck operator for this
process

iLD = −
∑

i

(

∂

∂~ri
· ~̇ ir +

∂

∂~pi
· ~̇ ip

)

= −
∑

i

(

~pi
mi

· ∂

∂~ri
+ ~Fi ·

∂

∂~pi

)

, (2.27)

where the subindex D stands for deterministic. This operator is also known
as the Liouville operator.

2.2.2.1 Velocity Verlet Algorithm

The deterministic Fokker-Planck operator can be split into a position and
a momentum part, Lr and Lp. Under the assumption of having a homoge-
neous process, which is true as long as the forces do not depend explicitly on
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the time, one can split the deterministic time-evolution operator (see eq. 2.23)
using a Trotter expansion:

TD = eiLD∆t = ei(Lr+Lp)∆t = eiLp∆t/2eiLr∆teiLp∆t/2 +O(∆t3) (2.28)

Hence, the position and momentum propagation, which are generated by the
inverse time-evolution operator T −1

D , decouple as well:

e−iLp∆t/2~ri = ~ri (2.29)

e−iLp∆t/2~pi = (1− iLp∆t/2) ~pi + 0 = ~pi +
∆t

2
~Fi (2.30)

e−iLr∆t~pi = ~pi (2.31)

e−iLr∆t~ri = (1− iLr∆t)~ri + 0 = ~ri +∆t
~pi
mi

(2.32)

Thus, one immediately obtains the velocity Verlet algorithm (see eq. 2.11 and
eq. 2.12):

~ri(t+∆t) = e−iLp∆t/2e−iLr∆te−iLp∆t/2~ri(t) +O(∆t3)

= e−iLp∆t/2

[

~ri +∆t
~pi(t)

mi

]

+O(∆t3)

= ~ri +
∆t

mi

~pi(t) +
∆t2

2mi

~Fi(t) +O(∆t3) , (2.33)

~pi(t+∆t) = e−iLp∆t/2e−iLr∆te−iLp∆t/2~pi(t) +O(∆t3)

= e−iLp∆t/2e−iLr∆t

[

~pi(t) +
∆t

2
Fi({~rj(t)})

]

+O(∆t3)

= e−iLp∆t/2

[

~pi(t) +
∆t

2
~Fi({~rj(t+∆t)})

]

+O(∆t3)

= ~pi(t) +
∆t

2

(

~Fi(t) + ~Fi(t+∆t)
)

+O(∆t3) (2.34)

Here, we used the assumption that ~Fi depends on the position, but not on
the velocities. After this derivation one can basically understand why the
velocity Verlet algorithm is a symplectic integrator.

The advantage of this derivation compared to the one presented before
is that the calculation can be done for any order in ∆t using a higher Trot-
ter expansion and for other equations of motion, like the stochastic ones in
the next section. In addition, a different splitting, instead of position and
momentum, of the Fokker-Planck operator will lead to a different integrator,
which is used in the case of thermostats.
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2.2.3 Canonical ensemble

In the previous part of the chapter, deterministic dynamics were considered,
which basically describe a micro-canonical ensemble (NVE). However, most
of the time, one is more interested in a canonical ensemble (NVT) to compare
with the experiment, but also to stabilize the system to overcome the errors
made by the integrator. In a canonical ensemble the system is in a ther-
modynamic equilibrium with a heat-bath instead of being isolated without
energy exchange.

There are certain additions to Newton’s equations of motion to generate
a canonical ensemble, which are called thermostats. They can act in a local
or a global fashion. A local thermostat acts on degrees of freedom, which
only depend on local properties of the system, e. g. particle velocity, relative
velocity between two neighboring particles or a random force. In contrast,
a global thermostat acts on a degree of freedom of the whole system, e. g.
the kinetic energy itself or an additional virtual mass of the system.

2.2.3.1 Rescaling Thermostats

The simplest way to adjust the temperature to a certain value T0 is to rescale
all velocities with a factor

λ =
√

T/T0 , (2.35)

where T is the actual temperature of the system. Two widely used examples
for rescaling thermostats are the Berendsen thermostat [42] and the stochas-
tic velocity rescaling thermostat [43]. The Berendsen thermostat rescales the
kinetic energy K with a constant rate to the desired mean value.

dK

dt
=

K(T )−K(T0)

τ
, (2.36)

where τ is the coupling constant of the Berendsen thermostat. This proce-
dure will lead to the right mean, but not to the correct fluctuations of the
temperature. Therefore, the Berendsen thermostat does not generate a “real”
canonical ensemble, but an iso-kinetic ensemble. To overcome this problem
the velocity rescaling thermostat of Bussi et al. [43] adds a stochastic term
to the kinetic energy.

dK

dt
=

K(T )−K(T0)

τ
+ 2

√

K(T )K(T0)

τ
η , (2.37)

where η is white noise with a certain fixed variance. However, both ther-
mostats act in a global manner, which can lead to unphysical situations,
due to the fact that the distribution of the kinetic energy is correct, but the
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distributions of individual degrees of freedom are wrong, e. g. the so-called
flying ice cube, where all bonds are frozen and the center of system moves
with a very high velocity.

2.2.4 Langevin Thermostats

The basic idea behind Langevin Thermostats [44] is to couple a molecule
to a background fluid, which is actually not simulated. This fluid and the
particles rub against each other, so the particles are damped according to
their velocity by friction and get randomly moved by the background fluid.
The correct ratio of friction and random noise ensures the right temperature.

Due to this randomness in the motion one calls this propagation Stochastic

dynamics, whose equation of motion is given by:

mi~̈ri = ~FC
i + ~FD

i + ~FR
i = ~Fi − ξi~vi + σi~ηi , (2.38)

where ~FC
i , ~FD

i and ~FR
i stand for conservative, damping and random force,

respectively.
The damping force ~FD

i is a Stokes-like friction force, which acts against

the direction of the velocity. The random force ~FR
i acts in a random direction

and is completely local, due to the fact that the background fluid is idealized
and there are no interactions of the fluid with itself. This locality leads to
independent noise, ~ηi, in space, time and particles. The noise and the friction
pre-factors, σi and ηi, are particle type dependent, because different particles
can have different sizes and surface roughness.

The ratio between ξi and ηi can be derived from the Fokker-Planck equa-
tion (see eq. 2.22). In the Fokker-Planck picture, having the correct distri-
bution means that the stationary solution of the Fokker-Planck equation

iLP =
∂

∂t
P = 0 (2.39)

is the canonical distribution. This simplifies to

iLe−H/kBT = 0 , (2.40)

ignoring the normalization factor of the canonical distribution. Due to the
fact that this equation of motion is nothing else than Newton’s equation
of motion with some additions one can split the Fokker-Planck operator in
a deterministic part LD and a stochastic dynamics part LSD:

iL = iLD + iLSD . (2.41)

We will first discuss the deterministic part.
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2.2.4.1 Deterministic Part

We already know the deterministic Fokker-Planck operator from above (see
sec. 2.2.2):

iLD = −
∑

i

(

~pi
mi

· ∂

∂~ri
+ ~Fi ·

∂

∂~pi

)

(2.42)

So one can calculate:

iLDe
−H/kBT = e−H/kBT

−1

kBT
iLDH

= e−H/kBT
1

kBT

∑

i

(

~pi
mi

· ∂

∂~ri
+ ~Fi ·

∂

∂~pi

)

H

= e−H/kBT
1

kBT

∑

i

(

~pi
mi

· ∂H
∂~ri

+ ~Fi ·
∂H
∂~pi

)

= e−H/kBT
1

kBT

∑

i

(

∂H
∂~pi

· ∂H
∂~ri

− ∂H
∂~ri

· ∂H
∂~pi

)

= 0 (2.43)

Hence, the deterministic Fokker-Planck operator accepts e−H/kBT as an equi-
librium distribution.

2.2.4.2 Stochastic Part

It is left to show that:

iLSDe
−H/kBT = 0 (2.44)

For this, we have to derive iLSD, which depends on the Kramers-Moyal coef-
ficients. The coefficients in ~ri are zero due to the fact that Newton’s equation
in ~ri (see eq. 2.3) stays unchanged in eq. 2.38. For the drift coefficients in ~pi
one obtains:

D1
i (~p, t) = lim

τ→0

< ∆~pi >

τ

= lim
τ→0

< ∆(−ξi~vi + σi~ηi >

τ

= lim
τ→0

−ξi~vi(t)τ + σi

∫ t+τ

t
dt′ < ~ηi(t

′) > +O(τ 2)

τ
= −ξi~vi(t) , (2.45)
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where we made use of the fact that the random noise is homogenous in time,
< ~ηi >= 0. The corresponding diffusion coefficients are given by:

D2
ij(~p, t) = lim

τ→0

< ∆~pi ⊗∆~pj >

2τ

= lim
τ→0

ξi~vi ⊗ ξj~vjτ
2 +

∫ t+τ

t
dt′

∫ t+τ

t
dt′′ σiσj < ~ηi(t

′)⊗ ~ηj(t
′′) >

2τ

− lim
τ→0

ξi~viτ ⊗ σj

∫ t+τ

t
dt′ < ~ηj(t

′) >

2τ

− lim
τ→0

ξj~vjτ ⊗ σi

∫ t+τ

t
dt′ < ~ηi(t

′) >

2τ
+ lim

τ→0

O(τ 2)

2τ

= lim
τ→0

σiσjδijc1
∫ t+τ

t
dt′

∫ t+τ

t
dt′′ δ(t′ − t′′) +O(τ 2)

2τ

=
σ2
i

2
δijc1 , (2.46)

where c is a constant, which determines the variance of the noise, which
we chose to be 2 for convenience. Again, one relies on the fact that the
noise is independent in space and time. For now we assume, that all higher
Kramers-Moyal coefficients vanish due to the fact that this is a standard
Fokker-Planck process (see the Pawula Theorem in sec. 2.2.1). However, one
can also obtain such vanishing coefficients by requiring some special noise,
i. e. Gaussian white noise. It is important to note that the terms in the first
order of τ actually determine the Kramers-Moyal coefficients.

From eq. 2.45 and eq. 2.46 we see that the stochastic part of the Fokker-
Planck operator is:

iLSD =
∑

i

∂

∂~pi
·
(

ξi~vi + σ2
i

∂

∂~pi

)

(2.47)

Finally one can determine the ratio between noise and friction:

iLSDe
−H/kBT =

∑

i

∂

∂~pi
·
(

ξi~vi + σ2
i

∂

∂~pi

)

e−H/kBT

=
∑

iα

∂

∂pαi
e−H/kBT

(

ξiv
α
i − σ2

i

kBT

∂H
∂pαi

)

=
∑

iα

∂

∂pαi
e−H/kBT

∂H
∂pαi

(

ξi −
σ2
i

kBT

)

(2.48)

This can be read as the Fluctuation-Dissipation theorem:

iLSDe
−H/kBT = 0 ↔ ξikBT = σ2

i (2.49)
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The left side is the requirement that e−H/kBT is the equilibrium distribution,
which was proven to be equivalent to having the right ratio between noise
and friction, σ2

i /ξi = kBT .

2.2.4.3 Summary

If one has a Langevin-type equation of motion

mi~̈ri = ~FC
i + ~FD

i + ~FR
i = ~Fi − ξi~vi + σi~ηi , (2.50)

then one generates a canonical ensemble if the Fluctuation-Dissipation theo-

rem is fulfilled:

ξikBT = σ2
i (2.51)

The noise has to have certain properties:

• Homogeneity: < ~ηi >= 0

• Independency in time and space: < ~ηi(t)⊗ ~ηj(t
′) >= 2δijδ(t− t′)1

Above, we have assumed that this motion is a standard Fokker-Planck process
to save the calculation of the higher Kramers-Moyal coefficients. Actually,
one would have to prove that all higher moments in ∆~pi have an order above
τ 1, which is the case for Gaussian white noise.

However, for integrators, which are only first order accurate in ∆t, one
can use random numbers from any symmetric distribution, as long as the
second moment has the correct variance [45]. Basically, the error made in
drawing the random number is of the same order as the error made by the
integrator. Thus, there is nothing to gain or loose by using box-shaped noise
instead of Gaussian white noise. For second order integrators the 4th moment
has to be correct as well.

The Langevin thermostat is one of the standard local stochastic ther-
mostats, which generates a canonical ensemble. In addition these local ther-
mostats stabilize the system, which global thermostats usually do not do.
Also the rescaling thermostat of Bussi et al. [43] can be viewed as a Langevin
thermostat however applied to the whole kinetic energy as a degree of free-
dom. Nevertheless, all Langevin thermostats discussed so far do not conserve
momentum, which is critical from the point of view of hydrodynamics. There-
fore, the Dissipative Particle Dynamics Thermostat, which does conserve the
momentum, will be discussed in the next section
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2.2.5 Dissipative Particle Dynamics Thermostat

The initial idea of dissipative particle dynamics (DPD) was to merge several
individual particles to a larger particle that interact via a much smoother
interaction, basically a weak harmonic interaction. So weak that these fluffy
particles can even interpenetrate each other and hence, the dynamics of the
particles is not really physical. However, for the point of statistic averages
DPD can serve as a very good model for fluids.

As in the case of stochastic dynamics a damping and a random force are
added to generate a canonical ensemble. Combining the damping and random
parts of the DPD with a common force field results in a DPD thermostat [46].
The DPD thermostat is known to satisfy Newton’s third law by construction.
Due to mass, momentum and temperature conservation, hydrodynamics is
also correctly reproduced [47]. This will be very useful for both, coarse-
grained and adaptive resolution, simulations of soft matter.

In Langevin dynamics, two additional forces are introduced, a damping
and a random force, whose ratio defines the temperature. For DPD, the
approach is similar [13, 48]:

~̈ri = ~FC
i + ~FD

i + ~FR
i , (2.52)

where ~FC
i denotes the conservative force on the ith particle. The damping

and random forces can be split up in particle pair forces

~FD
i =

∑

j 6=i

~FD
ij , (2.53)

~FR
i =

∑

j 6=i

~FR
ij , (2.54)

where the damping force reads as

~FD
ij = −ξ

‖
ijw

D(rij)(r̂ij · ~vij)r̂ij, (2.55)

and the random force is given by

~FR
ij = σ

‖
ijw

R(rij)ηij r̂ij . (2.56)

In these equations the relative velocity ~vij = ~vi −~vj between the ith and jth
particle is introduced, while r̂ij denotes the unit vector of the interatomic
axis ~rij = ~ri − ~rj.

It is important to note that both equations satisfy Newton’s third law,
which leads to the correct hydrodynamics. ξ

‖
ij is the friction constant and σ

‖
ij
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~v⊥i~vi

~v
‖
i

~v⊥j ~vj

~v
‖
j

Figure 2.2: Decomposition of the relative velocity: The decomposition of the
relative velocity between two particles, in the components on the interatomic axis and
perpendicular to this space, leads in a natural way to the standard and transverse DPD
thermostat. DPD thermostat

is the noise strength, which depend on the particle types. wD(rij) and wR(rij)
are r-dependent weight functions. In sec. 2.2.8 we will see that the coupling
to the thermostat is weak and hence the dynamics is not influenced very
much [46]. These parameters are connected by the fluctuation-dissipation
theorem, which has a similar form as in the case of stochastic dynamics (see
eq. 2.51). We will prove this in the remainder of this section.

2.2.5.1 Noise Properties

The noise properties of stochastic dynamics have to be slightly generalized
due to the fact that in the case of DPD we have a random force acting on
pairs of particles. The noise variable ηij is:

• Symmetric: ηij = ηji

• Homogenous: 〈ηij(t)〉 = 0

• Independent in time and particle pairs, symmetric in pairs (Newton’s
third law):

〈ηij(t)ηkl(t′)〉 = 2(δikδjl + δilδjk)δ(t− t′)

With this knowledge about the noise, we can now derive the Fokker-Planck
operator for DPD.
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2.2.5.2 DPD Fokker-Planck operator

As Newton’s equation in ~ri (see eq. 2.3) stays unchanged, one can apply
the same separation ansatz for the Fokker-Planck operator as for stochastic
dynamics (see eq. 2.41) and split the operator into two parts:

iL = iLD + iLDPD (2.57)

For the deterministic part, it is known that (see eq. 2.43):

iLDe
−H/kBT = 0 (2.58)

To show the equivalent for the DPD part, LDPD, we first have to calculate
the first Kramers-Moyal coefficients

D1
i (~p, t) = lim

τ→0

< ∆~pi(t) >

τ

= lim
τ→0

∑

j

ξ
‖
ijw

D(rij(t))(r̂ij(t) · ~vij(t))r̂ij(t)τ
τ

+ lim
τ→0

∑

j

σ
‖
ijw

R(rij(t))r̂ij(t)
∫ t+τ

t
dt′ < ηij(t

′) > +O(τ 2)

τ

=
∑

j

(

ξ
‖
ijw

D(rij(t))(r̂ij(t) · ~vij(t))r̂ij(t)
)

(2.59)
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and the second Kramers-Moyal coefficients

D2
ij(~p, t) = lim

τ→0

< ∆~pi ⊗∆~pj >

2τ

= lim
τ→0

∑

i′j′

. . .
∫ t+τ

t
dt′ < ηii′(t

′) > + . . .
∫ t+τ

t
dt′ < ηjj′(t

′) >

2τ

+ lim
τ→0

∑

i′j′

σ
‖
ii′w

R(rii′(t))σ
‖
jj′w

R(rjj′(t))r̂ii′(t)⊗ r̂jj′(t) +O(τ)

2τ
·

·
∫ t+τ

t

dt′
∫ t+τ

t

dt′′ < ηii′(t
′)ηjj′(t

′′) >

+ lim
τ→0

O(τ 2)

2τ

= lim
τ→0

∑

i′j′

σ
‖
ii′w

R(rii′(t))σ
‖
jj′w

R(rjj′(t))r̂ii′(t)⊗ r̂jj′(t) +O(τ)

2τ
·

·2(δijδi′j′ + δij′δi′j)τ

= δij
∑

i′

σ
‖
ii′w

R(rii′(t))σ
‖
ji′w

R(rji′(t))r̂ii′(t)⊗ r̂ji′(t)

+σ
‖
ijw

R(rij(t))σ
‖
jiw

R(rji(t))r̂ij(t)⊗ r̂ji(t)

= δij
∑

i′

[σ
‖
ii′w

R(rii′(t))]
2r̂ii′(t)⊗ r̂ii′(t)

−[σ
‖
ijw

R(rij(t))]
2r̂ij(t)⊗ r̂ij(t) , (2.60)

where the term i = j was added to the sums, which can be done because it
is zero.

The calculations are very similar to those for stochastic dynamics (see
eq. 2.45 and eq. 2.46). Due to the limit in τ one only has to determine the
term in first order of τ .

Putting it all together, the Fokker-Planck operator of dissipative particle
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dynamics is:

iLDPD = −
∑

i

∂

∂~pi
D1

i (~p, t)

+
∑

ij

∂

∂~pi

∂

∂ ~pj
D2

ij(~p, t)

=
∑

ijα

∂

∂pαi
ξ
‖
ijw

D(rij(t))(r̂ij(t) · ~vij(t))r̂αij(t)

+
∑

ii′αβ

∂

∂pαi

∂

∂pβi
[σ

‖
ii′w

R(rii′(t))]
2 (r̂ii′(t)⊗ r̂ii′(t))

αβ

−
∑

ijαβ

∂

∂pαi

∂

∂pβj
[σ

‖
ijw

R(rij(t))]
2 (r̂ij(t)⊗ r̂ij(t))

αβ

=
∑

ij

ξ
‖
ijw

D(rij(t))
∂

∂~pi
· (r̂ij(t)⊗ r̂ij(t)) · ~vij(t)

+
∑

ij

[σ
‖
ijw

R(rij(t))]
2 ∂

∂~pi
· (r̂ij(t)⊗ r̂ij(t)) ·

[

∂

∂~pi
− ∂

∂~pj

]

,

(2.61)

where r̂ij ⊗ r̂ij is the projector on the interatomic axis between particle i and
particle j.

In the literature [44, 47] the Fokker-Planck operator is then further sim-
plified to

iLDPD =
∑

ij

ξ
‖
ijw

D(rij(t))r̂ij(t) ·
∂

∂~pi
r̂ij(t) · ~vij(t)

+
∑

ij

[σ
‖
ijw

R(rij(t))]
2r̂ij(t) ·

∂

∂~pi
r̂ij(t) ·

[

∂

∂~pi
− ∂

∂ ~pj

]

,

(2.62)

but without that simplification one can identify the projector r̂ij ⊗ r̂ij in the
Fokker-Planck operator, which later allow us to generalize this calculation
for any projector.

Finally one can determine how the DPD Fokker-Planck operator acts on
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the equilibrium distribution:

iLDPDP = iLDPDe
−H/kBT

=
∑

ij

ξ
‖
ijw

D(rij(t))
∂

∂~pi
· (r̂ij(t)⊗ r̂ij(t)) · ~vij(t)e−H/kBT

−
∑

ij

[σ
‖
ijw

R(rij(t))]
2

kBT
×

× ∂

∂~pi
· (r̂ij(t)⊗ r̂ij(t)) ·

[

∂H
∂~pi

− ∂H
∂ ~pj

]

e−H/kBT

=
∑

ij

[

ξ
‖
ijw

D(rij(t))−
[σ

‖
ijw

R(rij(t))]
2

kBT

]

×

× ∂

∂~pi
· (r̂ij(t)⊗ r̂ij(t)) · ~vij(t)e−H/kBT (2.63)

So the fluctuation-dissipation theorem [47] reads

iLDPDe
−H/kBT = 0 ↔ ξ

‖
ijw

D(rij)kBT = [σ
‖
ijw

R(rij)]
2 , (2.64)

which for convenience can be split in a normalized distance dependent part
(

wR(r)
)2

= wD(r) (2.65)

and a part depending on the strength of noise and friction

ξ
‖
ijkBT = (σ

‖
ij)

2 . (2.66)

It is important to note that the second equation has the same form as in
the stochastic dynamic case (see eq. 2.51), but the freedom is much larger.

In addition to the friction constant, ξ
‖
ij, there is a function wR

ij(r) to choose.
Usually wR

ij is called weighting function and has the form:

wR
ij(r) = (1− r/rcut)

n, n = 1, 2, 3, . . . ,∞ (2.67)

With increasing n, the function tends towards the Heaviside function. A de-
tailed study about the influence of the weighting function can be found in [49].

The above DPD equations conserve the total momentum and correctly
reproduce the hydrodynamic interactions in the system.

However, as we will validate for a Lennard-Jones fluid later in sec. 2.2.8
and as previous studies [46, 50] have shown, the strength of the friction
ζ‖ does not influence the viscosity in linear order. To be able to tune the
value of the viscosity of the system while preserving all the virtues of the
standard DPD thermostat presented above, its extension named Transversal

DPD thermostat is introduced in the next subsection.
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2.2.6 Transversal DPD Thermostat

As it is known in the literature [46] and will be shown later for a simple
liquid (see sec. 2.2.8), the DPD thermostat in the above form is not capable
of controlling liquid properties such as viscosity and the diffusion constant.
Hence, we extend the DPD equations in such a way that these quantities
may be controlled by changing the parameters of the thermostat. A similar
approach coming from the viewing of smoothed particle hydrodynamics was
taken in Ref. [51].

We consider a more general version of DPD and study the terms, which
are not used in the standard DPD approach, i. e. the damping of the per-
pendicular components of the relative particle velocities.

The motivation for this is that the perpendicular components should be
the slow degrees of freedom, which stay untouched in the case of standard
DPD thermostat, while the fast degrees of freedoms are the relative veloc-
ities on the interatomic axis, which are influenced by the standard DPD
thermostat.

Therefore, we generalize eq. 2.55 and eq. 2.56 as

~FD
ij = −ξijw

D(rij)Pij(~rij) · ~vij (2.68)

and
~FR
ij = σijw

R(rij)Pij(~rij) · ~ηij , (2.69)

where ξ and σ are the friction constant and the noise strength of the gener-
alized thermostat, respectively. Pij(~rij) is a projection operator

P = P

T = P

2, (2.70)

which is symmetric in the particle indices (Pij = Pji). The scalar noise (see
page 23) is replaced by a noise vector ~ηij

〈~ηij(t)⊗ ~ηkl(t
′)〉 = 21(δikδjl − δilδjk)δ(t− t′) , (2.71)

which is antisymmetric in the particle indices (~ηij = −~ηji) due to the sym-
metry of the projection operator and the antisymmetry of the pair force
(Newton’s third law).

The corresponding Fokker-Planck operator, LDPD, is a sum of two parts:

iLDPD =
∑

ij

ξijw
D(rij(t))

∂

∂~pi
·Pij(~rij(t)) · ~vij(t)

+
∑

ij

[σijw
R(rij(t))]

2 ∂

∂~pi
·Pij((~rij(t)) ·

[

∂

∂~pi
− ∂

∂ ~pj

]

(2.72)
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The equilibrium condition LDPDe
−H/kBT = 0 then yields the fluctuation-

dissipation theorem in the same form as given by eq. 2.65 and eq. 2.66.
For the case of the projector chosen along the interatomic axis between

particle i and j
Pij(~rij) = r̂ij ⊗ r̂ij , (2.73)

we retain the standard DPD thermostat (see sec. 2.2.5) including the same
Fokker-Planck operator and the same noise properties.

Alternatively, one can project on the plane perpendicular to the inter-
atomic axis

Pij(~rij) = 1− r̂ij ⊗ r̂ij . (2.74)

The space defined by this projector is orthogonal to the one of the standard
DPD and defines an extension of the DPD thermostat named the Transverse
DPD thermostat. For illustration of the decomposition of relative velocity
see fig. 2.2 on page 23. Note that due to this orthogonality, the new ther-
mostat can be used in combination with the standard one. This enables us
to control at the same time two friction constants, ξ‖ and ξ⊥, for the stan-
dard and the Transverse DPD thermostat, respectively. Galilei invariance
and hydrodynamic conservation laws remain valid by construction.

It is important to note that due to the fact that the Transverse DPD
thermostat forces between molecules are not central, the total angular mo-
mentum of the system is not a conserved quantity anymore. Nevertheless,
these perturbations happen only on a local scale and are isotropically in
space, and therefore average out [51]. In the meanwhile an extension to
Transverse DPD thermostat was published, which repairs this violation of
angular momentum by introducing a four body-term [52].

The viscosity is very sensitive to the damping perpendicular to the in-
teratomic axis. This damping mimics the shear of those degrees of freedom
that were integrated out in the coarse-graining procedure (see sec. 2.3). In
a system with two particles, the stochastic forces of the Transverse DPD ther-
mostat act in the same direction as the shear forces. The mean force acting
on a particle in a sheared system with more than two particles is hence a sum
of two contributions: a force coming from the Transverse DPD thermostat
and another one originating from the shearing of the probe. Therefore, the
shear viscosity in a simulation with the Transverse DPD thermostat is always
higher than with the standard one.

Viewing this from the Green-Kubo picture [53, 54], which relates the vis-
cosity to the correlation functions of the stress tensor, this additional viscosity
arises from the projected stress-stress autocorrelation function, which can be
derived by the Mori-Zwanzig formalism [55, 56, 57]. The full derivation is
cumbersome and still under discussion [58].
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After discussing how the DPD thermostat is technically implemented in
the open-source package ESPResSo in the next section, we will demonstrate
its ability to control transport properties by the molecular dynamics simu-
lation of a simple Lennard-Jones liquid in sec. 2.2.8 and of atomistic TIP3P
water in sec. 3.4.

2.2.7 Implementation in ESPResSo

ESPResSo [59] is a software for soft matter simulations. A particular ad-
vantage is its expandability and modularity that simplifies development and
testing of new methods.

One can view the DPD thermostat as a usual pair interaction. A general
difficulty is that one has to ensure that random numbers are drawn in the
correct way, so that Newton’s third law, ~Fij = −~Fji, is satisfied, e. g. both
particles have exactly the same absolute value of the force. In ESPResSo
this problem is avoided by calculating the DPD forces for pairs of particles
only [46]. In the case of a parallelized simulation, where the system is divided
in domains, which are distributed among different processes, the pair forces
across the process boundaries are only calculated once and are then commu-
nicated to ensure that the same random number is used for both particles.

For convenience, in ESPResSo the friction constant is scaled with the
reduced mass of the particles

ξij →
2mimj

mi +mj

ξ̂ij . (2.75)

This draws a parallel to the common implementation of stochastic dynamics,
where the friction constant also has the unit 1/time. All derivations above
are still valid due to the fact that the fluctuation-dissipation theorem (see
eq. 2.66) holds for all values of ξij.

The DPD feature of ESPResSo can be enabled by adding:

#define DPD

to the ESPResSo configuration file, e. g. myconfig.h. The following TCL

command will then switch on the thermostat in the simulation:

thermostat dpd $temp $friction $r_cut \

$friction2 $r_cut2 $wf $wf2

where temp determines the temperature, friction, r cut gives the friction
constants ξ‖ and the cut-offs of the DPD thermostat, while friction2 and
r cut2 gives the friction constants ξ⊥ and the cut-offs of the transverse DPD
thermostat. wf and wf2 is an integer n defining the weighting function ac-
cording to eq. 2.67.

30
Rev. 292(e47a2e8ad7a2) from 2012-02-25



2.2. THERMOSTATS

2.2.8 Numerical Validation on Lennard-Jones Parti-
cles

As simulation of particles interacting via Lennard-Jones interaction is one of
the simplest liquids one can imagine, we will validate the ability of the trans-
verse DPD thermostat by changing the diffusion constant and the viscosity
of this liquid.

All simulations of the Lennard-Jones (LJ) liquid are performed using the
ESPResSo package [59].

We used the repulsive Weeks-Chandler-Andersen (WCA) potential

ULJ(r) = 4ǫ

(

σ12

r12
− σ6

r6
+

1

4

)

(2.76)

with the cut-off at rcut = 21/6σ, σ and ǫ being the standard LJ parameters
of length and energy.

A step function is chosen as the weight function (see eq. 2.67) for both
thermostats

wD(r) =

{

1, r < rc
0, r ≥ rc

. (2.77)

The simulations were carried out with a system consisting of Npart =
1000, 2000 and 4000 LJ particles at a temperature kBT = 1.2ǫ and density
ρ = Npart/V = 1/(1.05σ)3 in a cubic box with periodic boundary conditions
due to the fact that we have reference data using only a different thermostat
for this simulation setup (T ,ρ) [60].

First, we checked the dependency of pressure and temperature on the
strength of the friction in an equilibrium simulation. We set the reference
temperature to 1.2ǫ/kB and measured the instantaneous temperature, de-
fined as

T =
2Ekin

3Npart

, (2.78)

where Ekin and Npart are the kinetic energy and the number of particles of the
system, respectively. The relative deviation between the measured and the
reference temperature was smaller than 1.2% for all strengths of friction and
all combinations of thermostats. The mean pressure at that temperature
turned out to be (9.8 ± 0.2) ǫ/σ3, which is in perfect agreement with the
results of previous studies [60].

Next, we studied the dependency of the liquid transport properties, i. e.
diffusion constant and shear viscosity, on the friction constants, ξ‖ and ξ⊥,
for both, the standard and the transverse DPD thermostats.
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Figure 2.3: Diffusive dynamics of a LJ system: Diffusion constant (4000 LJ particles)
as a function of the friction measured in equilibrium for different thermostats. In the case
of the combined DPD thermostat only the strength of the friction parameter ξ⊥ was varied
while the friction for the standard one was held constant at the value ξ‖ = 1.0. The errors
were obtained by averaging over several runs.

2.2.8.1 Diffusion Constant

The diffusion constant was computed from the particle displacements using
the Einstein relation

D = lim
t→∞

< (~r(t)− ~r(0))2 >

6t
. (2.79)

Only a small influence on this constant from the standard DPD thermostat
[46] is expected, but a considerable one from the new transverse DPD ther-
mostat. In fig. 2.3 one sees that previous results for the standard DPD ther-
mostat could be confirmed, the diffusion constant stayed nearly unchanged.
The value of the diffusion constant approaches the Newtonian dynamics value
(D = 0.08σ2/τ) for vanishing friction of the Transverse DPD thermostat.

The diffusion constant D is very sensitive to the friction ξ⊥ for the Trans-
verse DPD thermostat. By changing ξ⊥ it is therefore possible to adjust the
diffusion constant.

2.2.8.2 Shear Viscosity

The shear viscosity was measured in a non-equilibrium molecular dynamics
(NEMD) simulation by shearing the system with a constant shear rate in the
y-direction [46]

γ̇ =
∂ux

∂y
. (2.80)
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Figure 2.4: Shear viscosity of a LJ system: Shear viscosity measured with the NEMD
algorithm for different thermostats (4000 LJ particles) and different shear rates (0.1 and
0.01 shown), which are then extrapolated to vanishing shear rates. The errors are obtained
by Jackknife analysis [61].

The viscosity can then be determined according to

ηS =
F

γ̇L2
, (2.81)

where F is the mean force (momentum transfer per time unit) and L2 is the
area of the slab. In a NEMD simulation the equilibrium distribution is not
exactly the canonical distribution, but can be approximated in first order by
one, so that the DPD thermostat, which generates a canonical ensemble, can
still be used.

In fig. 2.4 one sees that the apparent shear viscosity, ηS, measured in
a NEMD simulation approaches the zero-shear viscosity with decreasing shear
rate. We found nearly no dependency on the strength of the friction ξ‖ for
the standard DPD thermostat, (see also Ref. [46]). In contrast, the friction
ξ⊥ for the transverse DPD thermostat gives a very sensitive switch of con-
trolling the viscosity (see fig. 2.4). In the case of the combination of both
thermostats the shear viscosity is mostly controlled by the Transverse DPD
thermostat. In the limit of a vanishing shear rate a value of 2.45± 0.07ǫτ/σ3

was extrapolated, which matches former results [60]. This extrapolation has
to be done in order to obtain the equilibrium viscosity of the LJ system.
Additionally, we also checked the correlation functions of the pressure ten-
sor in an equilibrium simulation to show that these are in accordance with
the expected Green-Kubo picture: all (non-auto) off-diagonal - (off-)diagonal
elements are uncorrelated (60 of 81 possible elements are zero 2).

2All(9×9) minus autocorrelation terms(9) minus diagonal-diagonal(3×2) terms minus
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For higher values of ξ⊥ we ended up measuring the “viscosity of the
thermostat”. In this regime also the apparent viscosity becomes increasingly
dependent on the shear rate. This is due to the fact that the dynamics is
dominated by the thermostat forces, which are linear in ξ⊥ and the response
to the shear forces is not linear anymore. Hence the linear approximation in
eq. 2.81 breaks down and gives an inaccurate value for the viscosity.

2.2.8.3 Summary

Above, it was shown that the thermostat is working for a reference liquid.
One can assume that this will work for any pair-wise interaction, but here
we will only show that for a coarse-grained water model (see sec. 3.4). To
conclude, we have introduced an extension of the DPD thermostat, which on
the one hand inherits the good hydrodynamic properties, and on the other
hand allows to adjust the dynamics.

2.2.9 Thermostats for Molecules

When describing a small molecule in two different resolutions, e. g. atomistic
and coarse-grained resolution, the question is how this geometrical transfor-
mation maps down to the thermostat?

In this section we will discuss the special case of center of mass mapping,
but more general mapping schemes can be found in sec. 2.3.1. The force
acting on a center-of-mass of the αth molecule is just:

~Fα =
∑

i∈α

~fi , (2.82)

where i labels all the atoms in the molecule. For the damping force of stochas-
tic dynamics (see sec. 2.2.4, eq. 2.38) this means:

~FD
α =

∑

i∈α

~fD
i = −

∑

i∈α

ξi~vi = −ξ
∑

i∈α

mi~vi = −ξMα
~Vα (2.83)

So the structure of the damping force is retained if ξi = ξmi, which is a com-
mon convention in standard molecular dynamics to ensure that the heavier
particles experience higher damping. The summed up random force is:

~FR
α =

∑

i∈α

~fR
i =

∑

i∈α

σi~ηi =
√

kBTξMα

∑

i∈α

√

mi

Mα

~ηi = σ̂α~̂ηα , (2.84)

symmetric terms(6× 1)
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where we have defined σ̂α =
√
kBTξMα. The only thing left to do is to prove

that ~̂ηα has the right noise properties (see page 21). Homogeneity is trivial
due to the fact that ~ηi is homogeneous:

< ~̂ηα >=
∑

i∈α

√

mi

Mα

< ~ηi >=
∑

i∈α

√

mi

Mα

0 = 0 (2.85)

To prove the independence in time and space one calculates:

< ~̂ηα ⊗ ~̂ηβ > =
∑

i∈α

∑

j∈β

√
mjmi

Mα

< ~ηi(t)⊗ ~ηj(t
′) >

=
∑

i∈α

∑

j∈β

mi

Mα

2δijδ(t− t′)1

= 2δαβδ(t− t′)1
∑

i∈α

mi

Mα

= 2δαβδ(t− t′)1 (2.86)

This shows that all noise properties are retained. The thermostat acting on
the center of mass sites also obeys the fluctuation-dissipation theorem, if the
friction constants of the atoms are scaled with their masses. This basically
means that the sum of Langevin thermostats is again a Langevin thermostat,
as long as the friction constants are chosen correctly.

This can be understood due to the fact that the momentum autocorrela-
tion function decays with a correlation rate proportional to ξ/m and hence
the choice, ξi = ξmi, makes the autocorrelation functions of all atoms decay
with the same correlation time.

2.3 Coarse-Graining

After discussing the molecular dynamics method and thermostats, the focus
will now be shifted to different coarse-graining methods, which have been
used to obtain force fields for coarser representations of the studied systems.
Later these coarse-grained force fields will be used in the adaptive resolution
scheme to couple these two resolutions. But let us first take a look at the
general ideas behind different methods to understand their advantages and
disadvantages.

2.3.1 Mappings

The mapping scheme relates two representations of a system. The scheme is
usually based on intuition, which comes from structural properties on which
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the coarse-graining is based or from knowledge about the internal chemical
structure.

Here the focus will lie on coarse-graining techniques that link two particle-
based descriptions with a different number of degrees of freedom. The sys-
tem with the larger number of degrees of freedom is denoted as the ref-

erence system. The system with the reduced number of the degrees of
freedom is referred to as the coarse-grained system. An example is an
all-atom (reference) and a united atom (coarse-grained) molecular repre-
sentation, where the number of degrees of freedom is reduced by embed-
ding hydrogens into heavier atoms. Another example, which is analyzed
in detail here, is an all-atom (three sites) and a single site model of wa-
ter. Many examples of such models can be readily found in the litera-
ture [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

We assume that the following pre-requisites should be satisfied:

• Both the reference and the coarse-grained descriptions are represented
by a set of point sites, ~r = {~ri}, i = 1, 2, . . . , n in case of the reference

system, and ~R = {~Rj}, j = 1, 2, . . . , N in case of the coarse-grained

system. The coordinates {~Rj}, which are obtained from an atomistic
trajectory shall not be confused with the coordinates of a trajectory
obtained from coarse-grained simulations.

• A mapping scheme, i. e. a relation between ~r and ~R, can be expressed
as ~R = M̂~r, where M̂ is an n × N matrix, which is a special case of
a linear relation between ~r and ~R. Non-linear mapping can be useful
in some special case, but will not be considered here. The mapping
matrix M̂ is a block-diagonal matrix and to construct it, it is enough
to specify building blocks for each molecule type, e. g. for polymers it
is enough to specify M̂ for one repeat unit only.

• For the reference system, the coordinates and forces of a trajectory that
samples a canonical ensemble or at least the part of it, in which one is
interested to reproduce it on a coarse-grained level, are required.

The prime task of systematic coarse-graining is to devise a process for the
coarse-grained system. In many cases this process can be simply described
by its potential energy function U(~R), which we will assume here. To do
this, one can use several coarse-graining approaches.

2.3.2 Coarse-Graining Approaches

From the point of implementation, these approaches can be divided in itera-

tive and non-iterative methods. Boltzmann inversion is a typical example of
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a non-iterative method [26]. In this method, which is exact for independent
degrees of freedom, coarse-grained interaction potentials are calculated by
inverting the distribution functions of the coarse-grained system. Another
example of a non-iterative method is force matching, where the coarse-grained
potential is chosen in such a way that it reproduces the forces on the coarse-
grained beads [62, 30]. Configurational sampling [63], which matches the
potential of mean force, also belongs to this category. Boltzmann inversion
and force matching only require a trajectory of a reference system. Often this
is a “special” trajectory, which is designed to decouple the degrees of freedom
of interest, e. g. a single polymer chain in vacuum with appropriate exclu-
sions [26]. Once this is known, coarse-grained potentials can be calculated
for any mapping matrix M̂ .

Iterative methods refine the coarse-grained potential U(~R) by re-iterating
coarse-grained simulations and calculating corrections to the potential on the
basis of the reference and coarse-grained observables (e. g. radial distribution
function or pressure). The simplest example is the iterative Boltzmann inver-
sion method [64], which is an iterative analogue of the Boltzmann inversion
method. A more sophisticated update function is the inverse Monte Carlo
approach [65].

One can also classify systematic coarse-graining approaches by micro- and
macroscopic observables used to derive the coarse-grained potential, such as
structure-based [65, 66, 26], force-based [62, 67, 30], and potential-based
approaches [68], where the name identifies the observable used for coarse-
graining. Note that hybrids of these methods are also possible [28, 37].

In this thesis we will mainly focus on structure-based approaches, never-
theless we will also discuss some of the other methods in order to develop
a foundation for the coarse-graining studies performed here.

2.3.3 Simple Boltzmann Inversion

Boltzmann inversion is the simplest method one can use to obtain coarse-
grained potentials [26]. It is mostly used for bonded potentials, such as
bonds, angles, and torsions. Boltzmann inversion is structure-based and
only requires positions of atoms.

The idea of Boltzmann inversion stems from the fact that in a canonical
ensemble independent degrees of freedom q obey the Boltzmann distribution,
i. e.

P (q) = Z−1e−U(q)/kBT , (2.87)

where Z =
∫

dq e−U(q)/kBT is the partition function. Once P (q) is known one
can invert eq. 2.87 and obtain the coarse-grained potential, which in this case
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is a potential of mean force

U(q) = −kBT lnP (q) . (2.88)

Note that the normalization factor Z is not important since it would only
enter the coarse-grained potential U(q) as an irrelevant additive constant.

In practice, P (q) is computed from the trajectory of the reference system,
which is sampled either by Monte Carlo, molecular dynamics, stochastic
dynamics, or any other integrator that ensures a canonical distribution of
states.

Boltzmann inversion is simple to implement, however one has to be careful
with the rescaling of the probability P due to orientational entropy as well
as computational issues. The probability rescaling can be explained on a
particular example of coarse-graining of a single polymer chain by beads with
bond, angle and torsion potentials. In this case the coarse-grained potential
U depends on three variables: bond length r, angle θ and torsion angle ϕ.

Assuming, as before, a canonical distribution and the independence of
the coarse-grained degrees of freedom, we can write

P (r, θ, ϕ) = e−U(r,θ,ϕ) = Pr(r)Pθ(θ)Pϕ(ϕ) . (2.89)

If we now compute the histograms for the bonds Hr(r), angle Hθ(θ), and
torsion angle Hϕ(ϕ) we must rescale them in order to obtain the volume
normalized distribution functions. Note that in all the discussion, as before,
the irrelevant normalization prefactor Z has been ignored.

Pr(r) =
Hr(r)

4πr2
, Pθ(θ) =

Hθ(θ)

sin θ
, Pϕ(ϕ) = Hϕ(ϕ) . (2.90)

The coarse-grained potential can then be calculated by Boltzmann inversion
of the distribution functions

U(r, θ, ϕ) = Ur(r) + Uθ(θ) + Uϕ(ϕ) , (2.91)

with
Uq(q) = −kBT lnPq(q), q = r, θ, ϕ . (2.92)

On the technical side, the implementation of the Boltzmann inversion
method requires smoothing of U(q) to provide a continuous force. Splines
can be used for this purpose. Poorly and unsampled regions, namely regions
with high U(q), shall be extrapolated. Since the contribution of these regions
to the canonical density of states is small the exact shape of the extrapolation
is less important.
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Another crucial issue is the cross-correlation of the coarse-grained de-
grees of freedom. Independence of the coarse-grained degrees of freedom is
the main assumption that allows factorization of the probability distribu-
tion, eq. 2.89, and the potential, eq. 2.92, hence, one has to carefully check
whether this assumption holds in practice. This can be done by performing
coarse-grained simulations and comparing cross-correlations for all pairs of
degrees of freedom in atomistic and coarse-grained resolution, e. g. using a
two-dimensional histogram, analogous to a Ramachandran plot known from
protein simulations [69].

Checking the linear correlation coefficient would be another possibility,
however it does not guarantee statistical independence of variables, e. g. the
correlation of x with x2 is 0 if x has a symmetric probability density P (x) =
P (−x). This case is often encountered in systems used for coarse-graining [70,
71]. The concept of a two-dimensional histogram is illustrated in sec. 3.3.3
for liquid propane and a single molecule of hexane in sec. 3.3.4.

2.3.4 Iterative Methods

Iterative Boltzmann inversion (IBI) is a natural extension of the Boltzmann
inversion method. Since the goal of the coarse-grained model is to reproduce
the distribution functions of the reference system as accurately as possible,
one can also iteratively refine the coarse-grained potentials using a numerical
scheme. Depending on the update function, this can be done either by using
the iterative Boltzmann inversion [64] or the inverse Monte Carlo [65, 66]
method. The iterative Boltzmann inversion method will be discussed first.

2.3.4.1 Iterative Boltzmann Inversion

In the iterative Boltzmann inversion, the coarse-grained potential is refined
according to the following scheme:

U (n+1) = U (n) +∆U (n) , (2.93)

with

∆U (n) = kBT ln
P (n)

Pref

= U ref
PMF − U

(n)
PMF . (2.94)

One can easily see that convergence is reached as soon as the distribution
function P (n) matches the reference distribution function Pref, or, in other
words, the potential of mean force, U

(n)
PMF converges to the reference potential

of mean force.
Note that this is nothing else but a numerical scheme that allows one to

match the coarse-grained and the reference distribution functions. It can be

Rev. 292(e47a2e8ad7a2) from 2012-02-25
39



CHAPTER 2. THEORY & SIMULATION METHODS

seen as a first-order correction to the interaction potential with respect to a
gas of non-interacting particles. Indeed, in an ideal gas, the probability of
finding two particles at a distance r is

P (0)(r) = 4πr2/V (rmax) , (2.95)

which is equivalent to the statement that the radial distribution function
of an ideal gas is 1. Substituting P (0)(r) into eq. 2.94 we obtain the first
iteration

U (1)(r) = −kBT ln(Pref/4πr
2) , (2.96)

which is the potential of mean force, eq. 2.88.
IBI can be used to refine both bonded and non-bonded potentials. It

is primarily used for simple fluids with the aim of reproducing the radial
distribution function of the reference system in order to obtain non-bonded
interactions [64]. It can have convergence problems for multicomponent sys-
tems, even if we never experienced them. The reason is simply that it does
not account for cross-correlation correction terms, that is, the updates for
PAA, PAB, and PBB are not coupled (the subscript denotes a single com-
ponent in a multicomponent system). For such systems, the inverse Monte
Carlo method may work better. The scheme can be stabilized by multiplying
the update function, ∆U (n), by a factor η ∈ [0..1].

On the implementation side, IBI has the same issues as the inverse Boltz-
mann method, i. e. smoothing and extrapolation of the potential must be
implemented.

One should also note that according to the Henderson theorem [72, 73],
which is a classical analogue of the Hohenberg-Kohn theorem [74], the pair-
wise coarse-grained potential U(r) is unique up to an additive constant and
exists [75, 76]. This theorem, in principle, states that all structure-based iter-
ative methods must converge to the same coarse-grained potential, provided
that their aim is to exactly reproduce pair correlation functions of the refer-
ence system. As we will see later, this is often not the case in practice, since
small changes in the radial distribution function often lead to big changes in
the pair potential, i. e. it is difficult to control systematic errors during the
calculation of the potential update.

2.3.4.2 Pressure Correction

Another issue of coarse-graining is that coarse-grained models can not repro-
duce all the statistical or thermodynamic properties of the reference system.
Pressure, compressibility (see tab. 3.3 in sec. 3.2.2), or viscosity [77] are often
very different from those of the reference system, which is in general not a
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problem. But in some cases, one needs to correct some of these. For example,
the viscosity can be adjusted by tuning the parameters of the DPD thermo-
stat (see sec. 3.4) and the pressure can be corrected iteratively by adding a
linear term to the non-bonded potential

∆Upressure(r) = A

(

1− r

rcut

)

, (2.97)

where A is either a constant, e. g. −0.1 kBT [64] or can be estimated in
a different way. The virial expression of the pressure Pi is given by:

PiV = NkBT − 2

3
πNρ

∫ +∞

0

dr r3
dVi(r)

dr
gi(r) (2.98)

where Vi(r) and gi(r) are the potential and RDF of the i-th step the iteration,
respectively. The corrected potential is ought to match the correct pressure
P target, that is

P targetV ≈ NkBT − 2

3
πNρ

∫ +∞

0

dr r3
d

dr
[Vi(r) + ∆Vi(r)] gi(r) . (2.99)

The approximation appears due to the fact that gi(r) is the RDF of the
uncorrected system. Therefore, the unknown Ai satisfies

−
[

2πNρ

3rcut

∫ rcut

0

dr r3gi(r)

]

Ai ≈ (P − Ptarget)V . (2.100)

Usually one can not reach the target pressure by one step of the pressure-
correction due to stabilization issues. Therefore, the pressure-correction has
to be applied in a different way depending on the coarse-grained system, e. g.
every second step of iterative Boltzmann inversion or even after the inversion
already converged.

It should however be mentioned at this point that the pressure-correction
leads to a potential, where the isothermal compressibility deviates signifi-
cantly from that of the reference system. For water we have shown that com-
pressibility and pressure can not be corrected simultaneously (see sec. 3.2.2).

2.3.4.3 Inverse Monte Carlo

Inverse Monte Carlo (IMC) is another iterative procedure that refines the
coarse-grained potentials until the coarse-grained model reproduces a set of
reference distribution functions. It is very similar to IBI except that the
update of the potential, ∆U , is calculated using rigorous thermodynamic
arguments.
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The name “inverse Monte Carlo” is somehow confusing and is due to the
fact that the original algorithm was combined with Monte Carlo sampling of
the phase space [65]. However, practically any sampling method can be used
(e. g. molecular dynamics or stochastic dynamics) as long as it provides a
canonical sampling of the phase space.

A detailed derivation of the IMC method can be found in Ref. [65]. Here,
we briefly recapitulate a more compact version for non-bonded interactions,
which is outlined in Ref. [73], emphasizing technical problems encountered
during implementation and application of the method.

The idea of IMC is to express the potential update ∆U in a thermody-
namically consistent way in terms of measurable statistical properties, e. g.
the radial distribution function g(r). Considering a single-component system
as an example the Hamiltonian of the system can be written as

H =
∑

i,j

U(rij) , (2.101)

where U(rij) is the pair potential and it is assumed that all interactions
depend only on the distance rij , between particles i and j. Further it is
assumed that this potential is short-ranged, i. e. U(rij) = 0 if rij ≥ rcut.

The next step is to tabulate the potential U(r) on a grid of M points,
rα = α∆r, where α = 0, 1, . . . ,M , and ∆r = rcut/M is the grid spacing.
Then the Hamiltonian, eq. 2.101, can be rewritten as

H =
∑

α

UαSα , (2.102)

where Sα is the number of particle pairs with interparticle distances rij = rα,
which correspond to the tabulated value of the potential Uα.

On one hand, the average value of Sα is related to the radial distribution
function g(r)

〈Sα〉 =
N(N − 1)

2

4πr2α∆r

V
g(rα) , (2.103)

where N is the number of atoms in the system, hence 1
2
N(N − 1) is then

the number of all pairs and ∆r = rcut/M is the grid spacing, V is the total
volume of the system.

On the other hand, 〈Sα〉 is a function of the potential Uα and hence can
be expanded in a Taylor series with respect to changes in the potential, ∆Uγ

〈Sα〉0 +∆ 〈Sα〉 = 〈Sα〉0 +
∑

γ

∂ 〈Sα〉
∂Uγ

∆Uγ +O(∆U2) . (2.104)
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The derivatives ∂ 〈Sα〉/∂Uγ can be obtained from the correlation of 〈Sα〉

Aαγ =
∂ 〈Sα〉
∂Uγ

=
∂

∂Uγ

∫

dq Sα(q)e
−β

∑
λ UλSλ(q)

∫

dq e−β
∑

λ UλSλ(q)

= β (〈Sα〉 〈Sγ〉 − 〈SαSγ〉) .

(2.105)

Equations 2.103, 2.104, and 2.105 allow calculation of the correction for
the potential by solving a set of linear equations

〈Sα〉 − Sref
α = Aαγ∆Uγ , (2.106)

where Sref
α is given by the target radial distribution function. The procedure

is then repeated until convergence is reached.
A clear advantage of the IMC compared to the IBI method is that the

update of the potential is rigorously derived using statistical mechanics and
hence the iterative procedure shall converge faster with the IMC update than
with the empirical IBI update.

Another advantage is that, in the case of multicomponent mixtures, IMC
takes into account correlations of observables, that is updates for UAA, UAB,
and UBB are interdependent, where A and B denote different particle types.
In comparison, in the IBI method these updates are always independent due
to the fact that they only depend on the individual distributions. This can
lead to convergence problems in IBI for multicomponent systems.

The advantages come, of course, at a computational cost. As it is clear
from eq. 2.105, one has to calculate cross-correlations of Sα. This requires
much longer runs to get statistics that is good enough to calculate the po-
tential update to a similar accuracy as IBI. The accuracies of the update
functions of IMC and IBI methods are compared in sec. 3.2 for the case of a
coarse-grained model of water.

Another issue of the IMC method is the stability of the scheme. Several
factors can influence it: The first, and rather technical, point is that the
radial distribution function of the reference system gref(rα) has to be calcu-
lated using exactly the same convention for the grid as Sα (e. g. the function
value should be assigned to the middle of the interval), otherwise the scheme
becomes unstable. Second, inversion of Aαγ requires that it shall be well
defined. This means that one has to remove or handle with extra care the
regions, which are not sampled, such as those at the beginning of the radial
distribution function.

Rev. 292(e47a2e8ad7a2) from 2012-02-25
43



CHAPTER 2. THEORY & SIMULATION METHODS

The convergence can be significantly improved if a smoothing of the po-
tential update ∆U is used. Note that it is better to do smoothing of the
update function, not the potential itself, since the latter has more features,
which can be lost due to too aggressive smoothing. The convergence can
also be improved by introducing a multiplicative pre-factor n for the update
function in the case of iterative Boltzmann inversion or using a regularization
procedure by adding thermodynamic constraints [78].

Finally, we have also noticed that the systematic error in 〈SαSγ〉 is always
higher in the vicinity of the cut-off, which leads to a shift in the tail of the
interaction potential and, as a result, to a large offset of pressure. The cross-
correlation term 〈SαSγ〉 is also very sensitive to the box size, and special care
must be taken in order to converge the results with respect to system size.
Finite size effects are discussed in detail in sec. 3.3.2, where liquid methanol
was coarse-grained.

2.3.5 Force Matching

Force matching (FM) is another approach to evaluate coarse-grained poten-
tials [62, 30, 79]. In contrast to the structure-based approaches, its aim is
not to reproduce various distribution functions, but instead tries to match
forces on coarse-grained beads as closely as possible. A detailed formal sta-
tistical mechanical framework of force matching applied to a liquid state, or
a multi-scale coarse-graining method, is given in Ref. [80, 81, 82, 83]. FM is
a non-iterative method and hence is less computationally demanding.

The method works as follows: We first assume that the coarse-grained
force-field (and therefore the forces) depends on M parameters g1, . . . , gM .
These parameters can be pre-factors of analytical functions, tabulated values
of the interaction potentials, or coefficients of splines used to describe these
potentials.

In order to determine these parameters, the reference forces on coarse-
grained beads are calculated by properly re-weighting the forces on the atoms

~f ref
i = Mi

∑

α

wα
~fα

mα

, (2.107)

where Mi = (
∑

α w
2
α/mα)

−1
is the mass of the bead i, index α numbers all

atoms belonging to this bead, ~fα is the force on the atom α, mα is its mass
and wα are mapping coefficients used to obtain the position of the coarse-
grained bead, ~Ri =

∑

α wα~rα. If the center of mass is used in the mapping,
eq. 2.107 simplifies to the sum of the forces.
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By calculating the reference forces for L snapshots we can write down
N × L equations

~f cg
il (g1, . . . , gM) = ~f ref

il , i = 1, . . . , N, l = 1, . . . , L . (2.108)

Here ~f ref
il is the force on the bead i, ~f cg

il is the coarse-grained representation
of this force. Index l enumerates snapshots picked for coarse-graining. By
running the simulations long enough one can always ensure that M < N×L.
In this case the set of equations 2.108 is overdetermined and can be solved
in a least-squares sense.

Though the underlying idea of FM is very simple, implementation wise
it is the most complicated method. Going back to the set of equations 2.108
one can see that ~f cg

il is, in principle, a non-linear function of its parameters
{gi}. Therefore, it is useful to represent the coarse-grained force-field in such
a way that equations 2.108 become linear functions of {gi}. This can be done
using splines to describe the functional form of the forces [30].

An adequate sampling of the system requires a large number of snapshots
L. Hence, the applicability of the method is often constrained by the amount
of available memory. To remedy the situation, one can split the trajectory
into blocks, find the coarse-grained potential for each block and then perform
averaging over the blocks.

2.3.6 Implementation (VOTCA)

With a rich zoo of methods plus their combinations at hand, it is natural
to ask for an optimal method for a specific class of systems. On a more
fundamental level one might question whether the different methods provide
the same coarse-grained potential and whether it is possible to formulate a set
of (even empirical) rules favoring one method with respect to another. It is
obvious this is a difficult task to be treated analytically, especially for realistic
systems. Often it is not clear if a certain assumption, which was made by
a particular coarse-graining technique, is still fulfilled, hence one needs to
apply all available methods to the specific system and then compare and
quantify the degree of discrepancy between the coarse-grained and reference
descriptions.

This is, however, cumbersome due to the absence of a single package
where all these methods are implemented with the same accuracy and the
same level of technical detail. That is why we have started writing such
a coarse-graining package: the Versatile Object-oriented Toolkit for Coarse-

graining Applications (VOTCA) [5]. It is available as open source [84] under
Apache license [85]. The package was designed in collaboration with V.
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Rühle [86] and A. Lukyanov. The focus of the author of this thesis was
placed on the design of the iterative framework described in sec. 2.3.6.2.

Above we have described the basic ideas behind each method, paying
special attention to the technical issues one has to overcome when imple-
menting them. Later in the results chapter (see sec. 3) we then illustrate the
applicability of these methods by coarse-graining different systems with the
help of VOTCA. But first we will discuss the different parts of VOTCA in
more detailed fashion.

2.3.6.1 Coarse-Graining Engine

In a nutshell, coarse-graining is nothing more than an analysis of the canon-
ical ensemble of a reference (high resolution) system. In addition to this
analysis, iterative methods require canonical sampling of the coarse-grained
system, which can be done using either molecular dynamics (MD), stochas-
tic dynamics (SD), or Monte Carlo (MC) techniques. The latter are imple-
mented in many standard simulation packages. Rather than implementing
its own MD/SD/MC modules, the VOTCA toolkit allows swift and flexible
integration of existing programs in such a way that sampling is performed
in the program of choice. Only the analysis needed for systematic coarse-
graining is done using the package tools.

First of all the mapping engine converts the trajectory of the reference
system to the trajectory of the coarse-grained system, which then can be
stored or analyzed. The analysis tools include calculations of probability
distributions of bonded and non-bonded interactions, correlation and auto-
correlation functions, and updates for the coarse-grained pair potential. In
that sense also force matching is a kind of advanced analysis. Analysis tools
of the MD package can also be integrated into the coarse-graining work-flow,
if needed.

The package offers a flexible framework for reading, manipulating and
analyzing of MD/SD/MC topologies and trajectories. Its core is modular
and new file formats can be integrated without changing the existing code.
An interface for GroMaCS [87] and ESPResSo [59] topologies and trajectories
is provided. An interface to ESPResSo++ [88] is planned.

The coarse-graining procedure itself is controlled by several Extensible
Markup Language (XML) input files, which contain mapping and other op-
tions required for the work-flow control. In the mapping it is possible to
select groups of interactions that will be used for coarse-graining or analysis.
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2.3.6.2 Iterative Framework

For iterative processes, like iterative Boltzmann inversion and iterative in-
verse Monte Carlo, we have implemented a framework, which allows easy
controlling of work-flow. The work-flow chart is shown in fig. 2.5. The work-
flow is implemented as a shell script, which can, in principle, be run on all
available operating systems and provides the flexibility needed to call exter-
nal (or overload existing) scripts and programs written in other programming
languages. An interface to read values from the steering XML files in C++,
Perl and shell is also provided.

During the global initialization the initial guess for the coarse-grained
potential is calculated from the reference radial distribution function or con-
verted from a given potential guess to the internal format. The actual it-
erative step starts with an iteration initialization. It searches for possible
checkpoints, converts and copies files from the previous step and the base di-
rectory. Then the simulation run is prepared by converting potentials to the
format required by the external sampling program and the actual sampling is
performed. Currently, an interface with GroMaCS [87] is implemented and
extension to other packages is straightforward. After sampling the phase
space, the potential update ∆U is calculated. Often the update requires
post-processing, such as smoothing, interpolation, extrapolation or fitting to
an analytical form. A simple pressure correction [64] can also be seen as
a post-processing of ∆U , due to the fact that it only adds a linear inter-
particle separation function. Finally, the new potential is determined and
post-processed. If the iterative process continues, the next iterative step
starts to initialize.

The iterative framework does all these step in an automated fashion,
which allows to iterate as long as needed. An iteration with more than 10000
steps would barely be possible without a framework like this.

The iterative framework is flexible enough to implement tasks, which are
only remotely related coarse-graining, e. g. determination of the thermody-
namic force for AdResS (see sec. 2.4.6.10) or automated fitting of the viscosity
(see sec. 3.4). These examples show the power of the framework and future
extension, like simplex [89, 64] are in preparation.

2.3.6.3 Summary

VOTCA is an open source package under Apache license, which allows free
distribution and open development, but also proprietary developments for
industry are possible. The package provides an unified interface to the coarse-
graining methods introduced above and enables the user to do coarse-graining
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Global initialization

Initialize global variables (paths to
scripts, executables and user-defined
scripts)

Iteration initialization

Convert target distribution functions
into internal format, prepare input
files, copy data of the previous step

Prepare sampling
Prepare input files for the external
sampling program

Sampling
Canonical ensemble sampling with
molecular dynamics, stochastic dy-
namics or Monte Carlo techniques

Calculate updates
Analysis of the run. Evaluation of
distribution functions, potential up-
dates ∆U (n)

Postprocessing
of updates

Smoothing, extrapolation of potential
updates, Ad-hoc pressure correction

Update potentials U (n+1) = U (n) +∆U (n)

Postprocessing
of potentials

Smoothing, extrapolation of poten-
tials U (n+1)

Continue?

Evaluation of the convergence crite-
rion either for ∆U (n) or distribution
functions or check the number of it-
erations

Finish

yes

no

Figure 2.5: Block-scheme of the iterative framework: Block-scheme of the work-
flow control for the iterative methods. The most time-consuming parts are marked in red.
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in an automated fashion.

2.3.7 Potential of Mean Force using Constraints

For some systems it is often impossible to measure the full distribution of
a degree of freedom, which can be due to e. g. sampling problems and fi-
nite size. For this reason we will describe another method to determine the
potential of mean force (and also the distribution).

Usually a potential of mean force is obtained by inverting the distribution
(see sec. 2.3.3). However, this method is based on the fact that the full range
of the degree of freedom q was sampled, which can be tedious. For example in
the case that q is the distance r between two objects, the distribution of short
distances can not be measured due to the energy barriers of the repulsion
and distribution for long distances due to the finite size of the simulation
box.

Nevertheless one can also measure the potential of mean force by con-
straining the distance and measuring the average constrained force < ~fc >
to keep this distance [90]. The mean force is then the negative of this con-
strained force. So integration of this force

V (r2)− V (r1) =

∫ r2

r1

dr < −~f > (r) =

∫ r2

r1

dr < ~fc > (r) , (2.109)

will give the free energy difference. However, the above equation misses an
entropic part, which even pulls apart noninteracting particles. The entropic
force is given by [91]:

− d

dr

[

−kBT log 4π

(

r

r0

)2
]

=
2kBT

r
, (2.110)

where kB log 4π(r/r0)
2 is just the entropy of the phase space volume 4πr2.

This yields the potential of mean force:

VMF(r) =

∫ r

rcut

dr′ < ~fc > (r′) +
2kBT

r′
+ C , (2.111)

where C is a constant that can be chosen in such a way that VMF(r) is zero
at the cut-off rcut.

With the help of this method it is possible to measure the potential of
mean force and radial distribution functions of parts of molecules or objects,
e. g. ions, which appear in a very low concentration.
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Figure 2.6: Illustration of AdResS: A schematic illustration of the AdResS method
for a tetrahedral liquid. In this figure the cos2 weighting function is shown.

2.3.8 Summary

With the knowledge about the various coarse-graining methods and the im-
plementation in the VOTCA package at hand, we can now focus on the
AdResS scheme, which couples two resolutions based on the coarse-grained
force field derived by these methods. However, we have to keep in mind, that
the different methods of coarse-graining can depend on factors like chemical
structure, system size, rare events due to small concentrations and possible
correlations in time and space. Therefore, the derived potentials are only
correct under certain assumptions and can depend on the sate point, where
the development took place. Nevertheless, the savings in computer time and
thus the extension of the time simulated can be enormous. This enhance-
ment of simulatable time is also one of the major aims of the AdResS method,
which is described in the next section.

2.4 Adaptive Resolution Scheme

The driving idea behind AdResS is to develop a scheme where the interchange
between the atomistic and coarse level of description is achieved on the fly
by changing the molecular degrees of freedom (DOFs). In order to develop
this idea a test model for a molecule has been built.

In fig. 2.6 a pictorial representation of the tetrahedral molecule used and
its corresponding spherical coarse-grained representation is given, derived
in a way that it reproduces some chosen all-atom properties. The tetrahe-
dral molecule consists of four atoms bond together by a spring-like potential
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with a Lennard-Jones intermolecular potential (see explicit region of fig. 2.6);
specific technical details of the model as well as of the coarse-grained pro-
cedure for the spherical representation are reported in the results section
(sec. 4.1). The tetrahedral molecule can be seen as a simplified methane
molecule, which has an additional center atom. As fig. 2.6 shows, the atom-
istic molecule, when passing to the coarse-grained region, slowly loses its
vibrational and rotational DOFs. It passes through different stages of hybrid
atomistic/coarse-grained representation and finally reduced its representa-
tion to a sphere whose DOFs are solely the translational ones of the center
of mass with a proper excluded volume. A crucial point to keep in mind is
that the different resolutions do not mean that the molecules are of differ-
ent physical species, none of the resolutions should be preferred. The basic
underlying physics should be the same in all regions and thus the process of
exchange has to happen under the condition of thermodynamical and sta-
tistical equilibrium 3, which means thermal equilibrium T atom = T cg, and no
net molecular flux ρatom = ρcg. Those conditions must be preserved by the
numerical scheme and thus represent the conceptual basis of the method [92].
Next the effective dynamical coupling between the scales must be specified;
this is reported in the following section.

2.4.1 Scale Coupling

Once the effective potential is derived on the basis of the reference all-atom
system (see sec. 2.3) the atomistic and the coarse-grained scales are coupled
via a position dependent interpolation formula on the atomistic and coarse-
grained force [21, 93]:

~Fαβ = w(Xα)w(Xβ)~F
atom
αβ + [1− w(Xα)w(Xβ)]~F

cg
αβ , (2.112)

where α and β label two distinct molecules, ~F atom
αβ is derived from the atom-

istic potential where each atom of molecule α interacts with each atom of
molecule β, and ~F cg

αβ is obtained from the effective (coarse-grained) pair po-
tential between the centers of mass of the coarse-grained molecules. In the
region where a smooth transition from one resolution to another takes place,
a continuous monotonic switching function w(x) is defined as can be seen
in fig. 2.6 (where Xα, Xβ are the x-coordinates of the centers of mass of
the molecules α and β). A simple way to visualize the function w(x) is the

3Pressure balance P atom = P cg could be added as an additional condition, but is not
necessary due to the fact that it is sufficient to have homogeneous pressure outside the
transition region.
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following: w(x) is equal to one in the atomistic region and thus the switch-
able DOFs are fully counted, if w(x) is zero in the coarse-grained region the
switchable DOFs are turned off, between values of zero and one w(x) pro-
vides a (continuous) hybrid representations of such DOFs (i. e. they count
only in part).

In general, eq. 2.112, allows for a smooth transition from atomistic to
coarse-grained trajectories without perturbing the evolution of the system
in a significant way. More specific, the formula of eq. 2.112 works in such
a way that when a molecule passes from the atomistic to the coarse-grained
region, the molecular vibrations and rotations become less relevant until they
vanish so that w(x) smoothly freezes the dynamical evolution of those DOFs
and their contributions to the interactions with the other molecules. Vice
versa, when a molecule goes from the coarse-grained region to the atomistic
one, w(x) smoothly reactivates their dynamics and their contributions to the
intermolecular interactions. This all happens in thermodynamical equilib-
rium (see next section) and the DOFs are in contact with a thermostat to
satisfy this equilibrium and to avoid unphysical effects like artificial entropy
production.

Basically one has the following cases: All molecules interacting with
coarse-grained molecules interact as coarse-grained molecules independently
of the region where they are. The coarse-grained molecule does not have any
atomistic details, thus the other molecule can interact with this molecule
only via the center of mass - center of mass interaction. Two atomistic
molecules interact as atomistic ones, while for the other couplings, the in-
teractions are governed by the w(Xα)w(Xβ) combination. A very important
point of eq. 2.112 is that, by construction, Newton’s third Law is preserved.
The diffusion of molecules between regions with different resolution must not
be perturbed by the resolution change. Thus the conservation of the linear
momentum dictated by Newton’s third Law is crucial in adaptive resolution
MD simulations.

2.4.2 Thermodynamical Equilibrium

From eq. 2.112 a potential can not be derived and thus a scheme based on
eq. 2.112 would not have an energy to conserve. The natural subsequent
question is, how to control the thermodynamic equilibrium. The conceptual
problem for an adaptive scheme is that the free energy density can formally
not be uniform since the number of DOFs varies in space. However, as
the system should be uniform by construction and the underlying physical

nature of the molecules should be equal everywhere, this is only an arti-
fact of the interpolation formula used and not a real physical effect. This
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non-uniformity leads to a non-physical preferential direction of the molecu-
lar flux. In fact, as numerical tests show, there is a preferential tendency of
the atomistic molecules to migrate into the coarse-grained region and change
the resolution in order to lower the free energy of the system. The free en-
ergy is an extensive quantity that is proportional to the number of DOFs.
A simple qualitative way to picture this diode-like aspect is the following:
When a molecule moves from an atomistic to a coarse-grained region it loses
vibrational and rotational DOFs and thus in its interactions with the neigh-
boring (coarse-grained) molecules it must accommodate only its excluded
volume (i. e. find space). This becomes more complicated if a coarse-grained
molecule moves into an atomistic region. In this case the molecule acquires
rotational and vibrational DOFs and tries to enter into a region where other
molecules are already locally in equilibrium. This means that in order to
enter this region, the molecule should accommodate both rotational and vi-
brational DOFs according to the neighboring environment. Most likely the
molecule would enter with vibrational and rotational motions, which do not
fit the local environment and this would lead to a perturbation of the local
equilibrium. Hence, for such a molecule the way back to the coarse-grained
region is more convenient, and thus this free energy barrier works as a closed
door (probabilistically) for the coarse-grained molecules and an open door
for the atomistic ones so that a preferential molecular flux from the atom-
istic to the coarse-grained region is produced. In thermodynamic terms, as
an artifact of the method, the different regions are characterized by a differ-
ent chemical potential. However, since this aspect does not stem from the
physics of the system but only from the formalism, we have to amend for
this thermodynamical unbalance. This means that the use of eq. 2.112 alone
can not assure thermodynamical equilibrium and further formal relations,
linking the variables of the problem, should be determined in order to ob-
tain equilibrium. This can be obtained, as shown in the next sections, by
analyzing the meaning of the process of varying resolution in statistical and
thermodynamical terms.

2.4.3 Principles behind the Thermodynamical Equilib-
rium

In this section we analyze the idea of describing thermodynamical equilibrium
for a system where, formally, the number of DOFs is position dependent and
yet the molecular properties are uniform in space.
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2.4.3.1 Geometrically induced Phase Transitions

The space dependent change of resolution can be seen to have some simi-
larities to a physical phase transition, as a fictitious geometrically induced
phase transition. In simple words, the concept of latent heat is similar to
that of a molecule, which, for example, goes from the liquid to the gas phase
and in doing so needs a certain energy (latent heat) to activate those vi-
brational states that make the molecules free from the tight bonding of the
liquid state. In the same way, a molecule in the adaptive scheme that passes
from a coarse-grained to an atomistic resolution, needs a latent heat to for-
mally (re)activate the vibrational and rotational DOFs and to reach equilib-
rium with the atomistic surrounding. Vice versa the heat is released when
the molecule goes from gas to liquid phase and so the bond to the other
molecules becomes tighter. In the same way in the adaptive scheme, the
molecule passing from atomistic to coarse-grained, formally releases DOFs
and thus automatically the associated heat. This concept can be formalized
as:

µatom = µcg + φ , (2.113)

where µcg is the chemical potential calculated with the coarse-grained repre-
sentation, µatom that of the atomistic one, and φ is the latent heat [94, 92].
Possible procedures for a formal derivation of an analytic or numerical form
of φ and how to use it in the AdResS scheme is still a matter of discus-
sion and subject of work in progress [95]. For the time being, a simpler
and practical solution is to use a thermostat that is coupled to the system
(see sec. 2.4.6), which automatically, as a function of the position in space,
provides (or removes) the required latent heat assuring equilibrium of the
system and stabilizing the algorithm itself. The coupling of the system to
a thermostat leads to the natural question of how to define the temperature
in the region of transition where the number of DOFs is space dependent.

2.4.3.2 Temperature in the Transition Region

In the atomistic and coarse-grained region the temperature can be defined
employing the equipartition theorem:

T atom/cg = 2
< Katom/cg >

natom/cg
, (2.114)

where < Katom/cg > is the average kinetic energy of the atomistic/coarse-
grained region and natom/cg is the total average number of DOFs. In the
atomistic/coarse-grained region, such a quantity is a well defined number,
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however it is not in the transition region where ntrans = n(x). The ques-
tion arising is how to define T trans and above all what < Ktrans > means.
To address this question we make the following observations: The switching
procedure implies that a DOF, in calculating average statistical quantities,
fully counts in the atomistic region, which formally means that an integral
over its related phase space is performed (

∫

....dq; q being a generic switch-
able DOF). On the other hand in the coarse-grained region, q is not relevant
to the properties of the system and thus it does not count at all, that is, no
integration over its related phase space is required. In the transition region
the situation is something in between and thus by switching the DOF q on
or off, we effectively change the dimensionality (between zero and one) of its
related phase space that is of its domain of integration. In simple words q in
the transition region contributes to statistical averages with a weight. The
mathematical tool, which allows to formalize this idea is provided by the
technique of fractional calculus, where for a fixed resolution w the infinitesi-
mal volume element is defined as [96]:

dVw = dwq Γ(w/2)/2πw/2Γ(w) = |q|w−1dq/Γ(w) = dqw/wΓ(w) , (2.115)

with Γ(w) the well-known Γ function. Employing such a formalism to calcu-
late the average energy for quadratic DOFs one obtains:

< Kq >w=

∫∞

0
e−βq2qw+1dq

∫∞

0
e−βq2qw−1dq

(2.116)

The solution of eq. 2.116 is found to be [96]:

< Kq >w=
w

2
β−1 (2.117)

This is nothing else than the analog of the equipartition theorem for non-
integer DOFs. Here < Kq >w is the average kinetic energy of the switchable
DOF q for the fixed resolution w. One can then think to use w as a con-
tinuous parameter and thus obtaining the definition of the kinetic energy
for the switchable DOFs in the transition region. A further point needs to
be explained, that is, we have implicitly used a Hamiltonian to perform the
ensemble average and this would contradict the statement of the previous
section about the non-existence of an energy within the coupling scheme
used. To clarify this aspect we have to say that the coupling formula on
the forces is not directly related to the derivation of the statistical average
performed here. Here we have interpreted the process of changing resolution
as the process of partially counting a DOF contribution into the statisti-
cal determination of an observable under the hypothesis that the underlying
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Hamiltonian is the same all over the system. This is justified by the fact
that the underlying physics is in principle the same all over the system but
the formal representation and thus the analysis of the DOFs of interest and
their contributions differs. In practice this term means that the derivation
of the temperature and the principle of coupling of forces via spatial inter-
polation are two aspects of the same process but one can not formally derive
both from a single general principle so that the connection between them, at
this stage, must be intended as only being qualitative. However, we will use
simulations where both eq. 2.112 and eq. 2.117 are employed in connection
to each other to prove that they are numerically consistent. At this point the
obvious question arises why to choose an approach based on the interpolation
of the forces and not to choose the more natural one based on the smooth
interpolation of the potential. This problem is treated in the next section.

2.4.4 Coupling via a Potential Approach

The coupling scheme analog to eq. 2.112 using potentials instead of forces
would be:

Uαβ = w(xα)w(xβ)U
atom
αβ + [1− w(xα)w(xβ)]U

cg
αβ (2.118)

This approach leads to a series of problems whose solution is not trivial. In
particular if one derives the forces from eq. 2.118 one obtains an extra term,
which we will name drift force, of the following form:

~F drift = Uatom∂w

∂x
+ U cg∂w

∂x
(2.119)

There are two options at this point, one accepts this force as a result of a def-
inition of a new force field in eq. 2.118, or one tries to remove it by a specific
choice of w(x) or by modifying Uαβ in eq. 2.118. In the first case one has
to be aware that, because the derivative of w(x) enters into the equations of
motion, the evolution of the system becomes highly sensitive to the choice
of the form of w(x). This means that different functions w(x) may lead to
completely different results, and as the choice of w(x) is made on empirical
basis, the dynamic becomes arbitrary and thus, most likely, unphysical. The
limitation above applies in principle to the approach proposed in [23], where
the scales are coupled by an interpolation of Lagrangians via a space depen-
dent function. Moreover, the force obtained from eq. 2.118 does not preserve
Newton’s third law [94, 96].

Instead if one tries to follow the second possibility that is removing
~Fdrift, one encounters serious mathematical difficulties [97] since the condition
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~Fdrift = 0 leads to a system of partial differential equations of first order:

U cg∂f(Xα, Xβ)

∂Xα

+ Uatom
∂g(Xα, Xβ)

∂Xα

= 0

U cg∂f(Xα, Xβ)

∂Xβ

+ Uatom
∂g(Xα, Xβ)

∂Xβ

= 0 (2.120)

Here f(x) and g(x) are the most general switching functions one can think of.
For the system of eq. 2.120 each equation is characterized by two boundary
conditions, thus the system is overdetermined and in general a solution does

not exist. This is valid also if one tries to generalize eq. 2.118 as:

U coupling = f(Xα, Xβ)U
cg + g(Xα, Xβ)U

atom + Φ (2.121)

The extra potential Φ does not improve the situation because in this case the
overdetermination is shifted from f and g to Φ. This kind of problems, in
principle, occurs for the conserving energy method proposed in [22], where the
difference between the true (full atomistic) energy of the system and the one
of the hybrid scheme is provided during the adaptive run via a book keeping
approach while the forces are calculated with a scheme similar to that of
AdResS. The problem of the overdetermination reported above would mean
in this case that the conserved energy is not consistent with the dynamics of
the system. In comparison, the AdResS method has the limitation of not even
attempting to define an energy, but on the other hand the overall scheme is
robust enough to keep the dynamics and the essential thermodynamics under
control without the problem of energy conservation. The next step consists
of combining the principles of the previous section with known algorithms to
implement AdResS in an existing molecular code.

2.4.5 Algorithms of the Implementation

In this section we will discuss somewhat more technical details needed to
understand how AdResS can be implemented. First, every molecule needs
a well-defined mapping point in both representations, usually the center of
mass, but any other linear combination of particle coordinates is also suffi-
cient. Second, eq. 2.112 will be taken apart.

2.4.5.1 Force Fields and Interpolation

As mentioned above the force between two molecules is given by [21]:

~Fαβ = wαwβ
~F ex,mol
αβ + [1− wαwβ] ~F

cg,mol
αβ , (2.122)
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where α and β label the two molecules and wα, wβ are the adaptive weights
of the two molecules, which are a function of the position of their mapping
points. In the next section we will show how to distribute these forces between
molecules to their atoms using virtual sites. The first part, which results from
the explicit interaction of the molecules, can be written as:

~F ex,mol
αβ =

∑

i in
mol. α

∑

j in
mol. β

~F ex
ij , (2.123)

where ~F ex
ij is the force between the ith atom in αth molecule and the jth

atom in the βth molecule, which is given by a explicit force field. The second
part of eq. 2.122 comes from the coarse-grained interaction of the molecules.
The coarse-grained force field is usually derived from the atomistic system
by structure-based and state point coarse-graining (see sec. 2.3).

The important element of this interpolation (see eq. 2.122) is the adaptive
weight function (for illustration see fig. 2.6):

w(x) =







1 : atomistic/explicit region
0 < w < 1 : hybrid region

0 : coarse-grained region
, (2.124)

has a value between 0 and 1. Obviously this definition of w gives a purely
explicit force in the explicit region and a purely coarse-grained force in the
coarse-grained region, so essentially eq. 2.122 describes something new for
the hybrid region only. Depending on the physical interest of the research,
several functions can be implemented as long as the necessary boundary
conditions are fulfilled [21]. These conditions are that the function is 1.)
continuous, 2.) monotonic and has zero derivatives at the boundaries. This
ensures a smooth transition and the absence of artificial barriers.

In most applications a cos2-like function is used as a weighting function:

w(x) =











0 : x> dex + dhy

cos2
(

π
2dhy

(x− dex)
)

: dex + dhy >x> dex

1 : dex >x

, (2.125)

where dex and dhy are the sizes of the explicit and the hybrid region, re-
spectively. Other weighting functions have been tested in the early stage of
AdResS [21], but except for different perturbations in the density profile no
influences have been found.

In the literature both spherical [98] and one dimensional [93] splitting of
the simulation box has been reported and depending on this, the distance x
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to the center of the explicit region is calculated as follows:

x =

{

|(~Rα − ~Rct) · ê| : splitting in ê direction

|~Rα − ~Rct| : spherical splitting
, (2.126)

where ~Rct is the center of the explicit zone, which can be fixed or moved in
time (e. g. with the center of a molecule). ~Rα is the mapping point of the
αth molecule. For the center of mass mapping, it is given by:

Rα =

∑

i∈α miri
∑

i∈α mi

(2.127)

Note that the value of the weighting function depends exclusively on the
mapping of the molecule.

2.4.5.2 Virtual Sites

Virtual sites are needed in AdResS due to the fact that there are forces
acting on the coarse-grained representation and on the explicit representation
simultaneously, which need be to redistributed in the correct way to the
explicit representation.

These sites are well-known constructions [87] that allow for interactions
between arbitrary points in a molecule. One can imagine these interaction
points as virtual atoms, whose movement is determined by a geometrical
rule rather than by Newton’s equation of motion. In formulas this means the
potential between two real atoms is given by:

Vij = V ex(~ri, ~rj , . . .) + V vs(~rvs(~ri, ~rj , . . .)) , (2.128)

where the first part depends on the positions of the real atoms and the second
part depends on the position of the virtual site ~rvs, which is also a function
of the positions of the real atoms. The force on the ith atom deriving from
this interaction is simply given by:

~Fi = −∂(V ex + V vs)

∂~ri
= ~F ex

i + ~F vs∂~r
vs

∂~ri
, (2.129)

where the last product is a matrix multiplication. In the case where a virtual
site is located in the center of mass, which is the most important case in
standard AdResS, eq. 2.129 simplifies to:

~Fi = ~F ex
i +

mi
∑

i∈α mi

~F vs (2.130)
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2.4.5.3 Interface Pressure Correction

The interpolation of forces (see eq. 2.122) can produce inhomogeneities in
the density and affect the structure and total pressure of the system in com-
parison to a purely explicit simulation. These artifacts are results of the
inhomogeneous structure and pressure in the hybrid region, due to the fact
that the interpolation formula does guarantee the correct structure in the
transition region.

One way to reduce such effects in AdResS is to replace the coarse-grained
potential ~F cg,mol

αβ of eq. 2.122 in the hybrid region by a corrected one of the
form [98] 4:

~F cg,mol
αβ → ~F cg,corrected,mol

αβ = s(wαwβ)~F
cg,mol
αβ

+ [1− s(wαwβ)]~F
hy,mol
αβ , (2.131)

where ~F hy,mol is obtained from the structure and state point-based coarse-
graining of a constant-w system with w = 1/2 (see eq. 2.122). A common
choice for s is

s(x) = 4
(√

x− 1/2
)2

, (2.132)

which ensures that the coarse-grained particles (w = 0) interact with the
usual coarse-grained potential, while hybrid particles with w = 1/2 will feel

the full, corrected coarse-grained force field ~F hy,mol. The rest will interact
with an interpolated force that varies smoothly with s(x) (see fig. 2.7 for
illustration). Depending on the system, other smoothing functions and more
interpolation points could possibly lead to better results.

2.4.5.4 Thermodynamic Force

Another way of reducing the inhomogeneities due to the force interpolation
is the so-called thermodynamic force [99]. It consists of a position-dependent
external field applied in the region of interpolation in order to produce a flat
density profile, based on thermodynamic consistency considerations. The
force provides the amount of work necessary to compensate the difference
in excess chemical potential responsible for the density artifacts. Its effect
is exerted on the coarse-grained site of the molecules and can be used to
correct local density inhomogeneities in the hybrid region. The force can
also be used to couple explicit and coarse-grained regimes of different state
points.

4Again, it is important to note that this interpolation still obeys Newton’s third law.
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Figure 2.7: AdResS interface pressure correction: The force pre-factors of the
interface pressure correction (see eq. 2.131) between the coarse-grained (CG) and explicit
(EX) zone. Note that zone in the middle of the plot, 0 < wαwβ < 1, is not necessarily the
hybrid zone, but contains the hybrid zone.

2.4.6 Implementation in ESPResSo

In this section we explain how the AdResS method is integrated in the soft
matter research package ESPResSo [59]. It is important to note that we are
not aiming primarily for computational speed but rather for flexibility and
modularity, which was the major aim of ESPResSo since the beginning. A
fast implementation with a new adaptive integrator will be released in the
successor of ESPResSo: ESPResSo ++ [88].

2.4.6.1 General Overview

We implemented the AdResS simulation as an explicit simulation with ad-
ditional constraints, namely a virtual site in the center of mass of each
molecule that represents the coarse-grained particle. Therefore, we have
hybrid molecules throughout the simulation box and we integrate only the
explicit representations of the particles using a velocity Verlet scheme, af-
ter we have distributed the forces from their coarse-grained representations.
The idea of keeping the number of “virtual” particles constant over the whole
box is well known from grand-canonical simulations [100]. On one hand, this
makes our code slightly slower, but, on the other hand, one can omit the
calculation of the explicit interaction in the coarse-grained region and the
calculation of the coarse-grained interaction in the explicit region, which
would lead to an increase in the total speed of an adaptive simulation com-
pared to a pure explicit simulation. This double representation trick for every
molecule saves having to destroy and create particles on the fly, which is a
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very expensive operation in the sense of memory access and bookkeeping in
the case of a parallel simulation. It is important to note that the force cal-
culation is the most time consuming operation in most molecular dynamics
simulations, which essentially leads us to this approach. Of course we do not
calculate the forces on the particles where it is not needed. By not destroy-
ing the explicit particle this implementation favors molecules with only a few
particles, so it must be rethought for molecules with more than 25 particles.
However, this trick also allows us to perform constant-w simulations easily,
which are sometimes needed to determine the interface pressure correction
potential F hy,mol (see sec. 2.4.5.3).

The AdResS feature of ESPResSo can be enabled by adding:

#define ADRESSO

to the ESPResSo configuration file, e. g. myconfig.h and the following line
in the header of the steering TCL script:

adress set topo $kind width $width $hybrid_width \

center x $R_x wf $wf

where kind determines the type of AdResS simulation:
0 disabled
1 constant weight function
2 one dimensional splitting
3 spherical splitting
wf the type of weighting function:
0 see eq. 2.125
1 user defined
width and hybrid width are the widths of the explicit and hybrid regions
(see eq. 2.125), respectively and R x is the x position of the center of the
explicit zone.

2.4.6.2 Integrator

The integration in ESPResSo is done by a standard velocity Verlet integrator
with an addition to allow NV T ensemble simulations by a Langevin [44]
or a DPD [46, 1] thermostat. It works in the following way, which is the
numerical version of what we have described in fig. 2.1 on page 11.

1. v(t+∆t/2) = v(t) + ∆t/2 · f(t)/m

2. p(t+∆t) = p(t) + ∆t v(t+∆t/2)

3. Calculate f(t+∆t) from p(t+∆t), v(t+∆t/2)
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4. v(t+∆t) = v(t+∆t/2) + ∆t/2 · f(t+∆t)/m

The scheme must be extended in the case of an AdResS simulation:

1. v(t+∆t/2) = v(t) + ∆t/2 f(t)/m

2. p(t+∆t) = p(t) + ∆t v(t+∆t/2)

2b. Update the positions, velocities and weighting functions w(R) of the
virtual sites (see eq. 2.124 and eq. 2.127)

3. Calculate f(t+∆t) from p(t+∆t), v(t+∆t/2)

3b. Distribute the force of the virtual sites to the real particles using
eq. 2.130

4. v(t+∆t) = v(t+∆t/2) + ∆t/2 f(t+∆t)

The double representation of every molecule allows us to apply the actual
integration (step 1,2,3,4) on the explicit particles only, regardless of their
real representation given by the weighting function. This is obviously not
the most effective method of implementation, but avoids the need to develop
a new integrator that can switch the actual calculation between explicit and
coarse-grained particles on the fly.

2.4.6.3 Parallelization Scheme

The ESPResSo package basically divides the simulation box into sub-boxes,
which are distributed among different processors. To allow the calculation
of interactions across the boundaries of these sub-boxes, every sub-box is
surrounded by a so-called ghost layer. This layer contains copies of the par-
ticles, which are in a different sub-box (and so on a different processor), and
are called ghost particles. These ghosts are updated after every propagation
step of their real counterparts by communication between the neighboring
processors. A detailed description can be found in the ESPResSo publica-
tion [59].

Only the communication part of the propagator needs to be modified
in the presence of virtual sites. Essentially, the amount of communication
doubles due to the fact that the positions of all the particles (including the
ghost particles) have to be updated to calculate the positions of the virtual
sites (first communication) and the position of the virtual sites has to be
distributed again (second communication).

The same effect comes into play when the forces are collected from all
the copies of one particle (ghosts and real particles). To distribute the force
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from a virtual site one needs to sum up its forces first (first communication)
and then distribute them, but as the forces are possibly distributed to ghost
particles one will have to collect the forces again (second communication). It
is clear that in the absence of virtual sites the second communication is not
necessary.

2.4.6.4 Thermostat

ESPResSo provides several stochastic thermostats, which are of a local na-
ture and can be extended to the AdResS scheme. We will discuss all the
details for the Langevin thermostat [44], but they also apply for the DPD
thermostat [46, 1]. We want to obtain a canonical distribution of the veloci-
ties of the atoms in the hybrid and explicit regions and of the centers of mass
in the whole system. This requires the proper application of the thermostat
to each region with a consistent initialization of the atoms’ velocities when-
ever a molecule crosses from the coarse-grained to the hybrid regime. While
we have chosen to apply the Langevin thermostat over the complete box on
the explicit particles, independent of their nature, there are two tested ways
of initializing the explicit velocities when the additional degrees of freedom
are introduced:

• Copy the atoms’ velocities relative to the center of mass of a molecule
from a random explicit molecule when a molecule crosses the border to
the hybrid region. This method was used in the original description of
AdResS [21].

• The thermostat acts on the explicit representation of the particle ev-
erywhere, regardless if they are in the coarse-grained region or not. In
this case the initialization does not matter, since the atoms are already
thermalized. It is clear that the coarse-grained particles (technically
virtual sites at the centers of mass) will automatically have the cor-
rect velocity distribution, if all the explicit particles have the correct
distribution 5.

The main difference between these two approaches is that the second
case is much easier to parallelize, since less communication is involved. Un-
der both schemes the temperature and density profiles are unchanged and

5For the center of mass of a molecule, one just has to add up the individual Langevin
thermostats of the atoms of the molecule and it follows that this “summed thermostat”
obeys the dissipation-fluctuation theorem itself, if the friction of the explicit particles is
scaled with their masses (for the detailed derivation see sec. 2.2.9)
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the structural properties remain intact. Thus, the correct distribution of
velocities is guaranteed.

The thermostat can be set up as follows:

thermostat langevin $temperature $friction

or

thermostat dpd $temperature $friction $cutoff

2.4.6.5 Intramolecular Initialization

For the initialization of the molecule’s orientation and internal bond-lengths
when crossing from the coarse-grained to the hybrid regime, we follow the
same procedure as for the velocities in the previous subsection, that is, we as-
sign relative positions by selecting a random explicit particle or, alternatively
keep the explicit representations that come from the coarse-grained region,
where the atoms feel no intermolecular interaction. In both cases, the be-
havior is similar, but in the second approach the results are much simpler to
implement and faster during computation.

2.4.6.6 Bonded Interactions

The intra-molecular interactions are not described by the general interpola-
tion equation (see eq. 2.122), but are fully included within the whole sim-
ulation box. For rigid molecules such as water there is no explanation for
this approach needed, however, for flexible bonds, the bonded interactions
are still calculated across the whole simulation box without any interpolation
due to stability reasons. It is clear that this only works for coarse-grained
models with one coarse-grained site per molecule. For more complicated
structures where bonded interactions are also present in the low resolution
regime, the force interpolation has to be rethought.

2.4.6.7 Cut-Offs

As the representation (explicit, hybrid or coarse-grained) of the molecule is
determined on the basis of the position of the center of mass of the molecule it
is natural to use a cut-off based on the distance between the centers of mass.
This strategy is well known [101] in water simulations with Reaction-Field
to avoid artificial dipole moments at the cut-off. In other words, a molecular
cut-off ensures that either all particles or no particles of a molecule interact.

We have implemented the molecular cut-off as a virtual interaction:
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inter $type1 $type2 molcut 1 $cut-off

where type1 and type2 are the particle types. Internally the distance be-
tween the centers of mass of the molecules to which these particle types
belong is used. All other individual interaction cut-offs stay active and have
to be increased to a value higher than the molecular cut-off in the case that
one wants to simulate a system with molecular cut-offs only.

2.4.6.8 Molecules & Mappings

The basic support to join particles to molecules comes with the standard
version of ESPResSo. The user is allowed to combine a set of particles into
a molecule. We use this feature to equip every molecule with one virtual site
to define the set of atoms from which the center of mass is calculated. The
extension to center of geometry or multiple virtual sites in one molecule is in
preparation.

A single tetrahedral molecule can be set up with:

set molecule_topology $molecule_type

part 1 pos $pos1x $pos1y $pos1z virtual 0

lappend molecule_topology 1

part 2 pos $pos2x $pos2y $pos2z virtual 0

lappend molecule_topology 2

part 3 pos $pos3x $pos3y $pos3z virtual 0

lappend molecule_topology 3

part 4 pos $pos4x $pos4y $pos4z virtual 0

lappend molecule_topology 4

part 5 pos $pos5x $pos5y $pos5z virtual 1

lappend molecule_topology 5

eval analyze set $molecule_topology

analyze set topo_part_sync

and the position of the virtual site (in this case particle number 5) can be
set to the right position by calling

integrate 0

From now on

integrate $steps

will integrate the whole system for steps steps and move the virtual sites
accordingly.
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2.4.6.9 Interface pressure correction

The interface correction is introduced as a new kind of non-bonded tabulated
interaction.

inter $type1 $type2 adress_tab_ic $filename

where type1 and type2 are the types of particles subjected to the coarse-
grained interaction that will be modified. They must be virtual particles.
filename contains the tabulated fields corresponding to the interactions
~F cg,mol
αβ and ~F hy,mol

αβ according to eq. 2.131. The syntax is consistent with
the usual tabulated interactions, the first four lines being the special charac-
ter #, followed by the number of points N and the minimum and maximum
separation distances rmax and rmin. After this information, the two potentials
are introduced in five columns, as r, ~F cg,mol

αβ /r, ~U cg,mol
αβ , ~F hy,mol

αβ /r, ~Uhy,mol
αβ . The

number of points and the cut-off radius are assumed to be the same for both
potentials, while the values of r are equally distributed between rmin and
rmax with a fixed distance (rmax− rmin)/(N − 1). The position and potential
columns are ignored in the calculations and are included for readability only.

2.4.6.10 Thermodynamic Force

This new force is implemented as a tabulated external field that acts only in
the switching region. Different kinds of particles can have different thermo-
dynamic forces. The corresponding command is

thermodynamic_force $type $filename $prefactor

where type is the type of particle on which the tabulated force specified in
filename will be exerted. prefactor is a coefficient that multiplies the force
defined by the user.

The format of the tabulated external field follows the same definition
as the tabulated pair potentials in standard ESPResSo. It starts with four
special lines with the character #, the number of points and the minimum
and maximum separation distances, rmax and rmin. Then, three columns
should be entered, s, −dU

ds
and U . s corresponds to a dimensionless position

x
dhy

in the hybrid region, going from 0 (coarse-grained representation) to 1

(explicit representation). The derivative of the potential has to be expressed
as a function of this variable. The third column is the potential energy
associated with the field; it has no effect on the equations of motion and is
included for readability only.
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2.4.7 Summary

We have shown how to use AdResS in ESPResSo. In addition, we described
several correction algorithms to obtain a flat density distribution over the
entire box. We also discussed several choices in the implementation, which
were made based on performance issues, namely the thermostat and the reini-
tialization of the molecule. A sample AdResS simulation was made available
in the tutorial of ESPResSo version 2.2. However, ESPResSo ++ [88] is also
on the way and will replace ESPResSo in the near future. A similar imple-
mentation has been done in GroMaCS [102] to study atomistic systems.

The implementation in ESPResSo will used to reproduce some results
from previous studies of the tetrahedral liquid in sec. 4.1.While the implemen-
tation in GroMaCS will used to study water and the hydration of fullerenes
in sec. 4.2 and sec. 4.3.
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Chapter 3

Coarse-Graining

To remind the reader, coarse-graining methods aim at finding a way to map
an all-atom model onto a less structured and simpler model, which is compu-
tationally much more efficient. A coarse-grained system should preserve as
many properties of the underlying all-atom system as possible or as required
by the physical question under consideration.

In this section we will focus on the description of water on the coarse-
grained level, i. e. treating water molecules as ideal spheres. All non-spherical
effects are neglected, which in some cases can be a rather crude approxima-
tion. We will see which atomistic properties can be reproduced using these
simplified models.

After a detailed study of the common three-site water model using iter-
ative Boltzmann inversion, different coarse-graining techniques will be com-
pared. As the idealized water ball is often too simple to show certain effects,
such as multicomponent effects or the effects of limited basis sets, one must
also take a look at some slightly more complicated molecules like methanol,
propane and hexane.

As the use of coarse-grained models aims at a simplified description of
both static and dynamic properties, it will be shown how to tune some trans-
port properties, namely the diffusion constant and the viscosity, of a coarse-
grained water system to those obtained on the atomistic level. This shows
that only parts of the dynamics, namely the diffusion part, can be recovered,
but not the full dynamics of the atomistic system.

But let us first briefly discuss the atomistic water model to understand
what we are actually coarse-graining.
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3.1 Atomistic Water Models

The development of all-atom water models has a long history. The first ideas
go back to Bernal and Fowler in 1933 [103]. The modern development of
water modeling in computer simulation started in the early 1970s and sev-
eral of the currently used models were developed in the 1980s. The SPC
model was introduced by Berendsen and co-workers in 1981 [104] and TIP3P
and TIP4P were published in 1983 [105]. The most widely studied exten-
sion of the SPC model, namely the SPC/E model (1987) [106], takes into
account the averaged polarization effects. A more recent development is the
TIP5P (2000) [107] model that is able to reproduce the density anomaly near
277 K as well as to maintain high-quality structural and thermal properties.
Over the last 30 years a huge amount of work has been devoted to develop
improved water models [108] and this will stay an active area in the future.

All-atom models are designed and parameterized to fit one or more physi-
cal properties, such as the radial distribution function, density anomaly, heat
of vaporization, dipole moment, etc. Alternatively, they can be based on ab
initio calculations of water dimers or higher clusters. None of the classical
all-atom models is able to simultaneously reproduce all physical properties
of water, as is pointed out and analyzed in literature [108, 109, 110, 111].
Moreover, all present models take only two-body interactions into account,
while three-body interactions, which are shown to contribute less than 14.5%
to the total internal energy [112], are neglected. This also gives an impression
about the typical accuracy achieved by classical all-atom models used so far.
Although the water molecule is small and one of the most basic molecules
in nature, it still poses difficult problems. Nevertheless MD simulations em-
ploying classical atomistic water models play an increasingly important role
in many areas of computational physics and chemistry.

In the present work, three simple rigid and non-polarizable three-site
models (TIP3P [105], SPC[104] and SPC/E [106]) are studied. All more
complex models are extensions thereof. The methods described below can be
extended to any all-atom water model without substantial problems. There-
fore, the simplest water models are chosen.

The oxygen atoms interact through a Lennard-Jones potential, which
defines the overall size of the molecule, while the Coulomb interaction is
assigned to charges on the hydrogen and oxygen nuclei to model hydrogen
bonds. The intermolecular potential of these models can be expressed as

Vαβ =
∑

i∈α

∑

j∈β

qiqje
2

4πǫ0rij
+

C12

r12OO

− C6

r6OO

, (3.1)

where α and β stand for two different molecules and rij denotes the distance
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TIP3P SPC SPC/E

rOH [Å] 0.9572 1.0 1.0
6 HOH [◦] 104.52 109.47 109.47
103C6 [kJ/mol nm6] 2.4889 2.6171 2.6171
106C12 [kJ/mol nm12] 2.4352 2.6331 2.6331
qO [e] −0.834 −0.820 −0.8476
qH [e] +0.417 +0.410 +0.4238

6 HOH

rOH

qH

qO

VdW

Table 3.1: Parameters of all-atom water models: The water models studied here are
the rigid versions of TIP3P, SPC and SPC/E. All of them have Lennard-Jones interactions
between the oxygens, whose C6 and C12 is given above.

between atom i on molecule α and atom j on molecule β. rOO denotes the
distance between the oxygen atoms. The intramolecular interactions are not
considered because the geometry of the molecule is kept rigid. The parame-
ters of the interactions and geometrical constraints are listed in tab. 3.1. The
intramolecular bonds are kept rigid by the LINCS algorithm [113].

Various water models with internal degrees of freedom have been studied
as well. These internal degrees are bond length and angle vibrations [114,
115, 116, 117] or even polarization effects [118, 119, 120, 121, 122]. Such
models are not considered here.

3.2 Coarse-Grained Water Models

Here, we map the entire water molecule onto one coarse-grained bead in the
center of the oxygen. Recently, this procedure was adapted to study TIP3P
water in an adaptive resolution simulation (AdResS method) [123]. In that
study the parameterization of the coarse-grained model was based on TIP3P
water with a bond angle of 112.19◦ instead of 104.52◦ [124]. This can led
to a shift of the relative depths of the minima in the coarse-grained poten-
tial. This difference in coarse-grained models motivated, to some extent, this
detailed study, in which different models are compared in a systematic way.

As already discussed in sec. 2.3, there are different options to parameter-
ize the effective coarse-grained particle-particle interactions in order to match
the overall water structure most closely. Coarse-grained models can not re-
produce every property of the corresponding all-atom model [125]. Therefore
one has to adjust the coarse-grained model based on which question it is sup-
posed to answer. For now we are mostly concerned with the structural prop-
erties of liquid water at a given temperature and pressure. The construction
of an effective interaction consists of two main steps:
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1. Iterative Boltzmann inversion. This scheme constructs an effective po-
tential that reproduces the center of mass or O-O radial distribution
function of the all-atom model. So, if a property of interest is mostly
relying on the RDF, then it is naturally reproduced by the resulting
coarse-grained model. For the three water models considered in this
chapter, the differences in the peaks and minima between the center of
mass and O-O radial distribution functions are no more than 2%.

2. Adjust the obtained potential produced by the first step to reproduce
further properties we are interested in. Of course the correction may
sacrifice the accuracy of other properties that are not so important to
the problem. This step can be iterated with every step of iterative
Boltzmann inversion or after the whole inversion procedure.

3.2.1 Liquid Structure – Geometrical Consideration

A special property of liquid water is the tetrahedral packing due to hydrogen
bonds. For the all-atom models this local structure is the result of the near-
est neighbor Coulomb interaction of the partial charges on the oxygens and
hydrogens. In contrast to the all-atom models, the effective potential is spa-
tially isotropic. For that reason the structure is a result of two length scales
in the effective potential. Here, we will refer to the molecule in the center of
four nearest neighbors as the reference molecule and analyze whether such
a cluster resembles the tetrahedral packing of the underlying all-atom model.
The tetrahedral packing is measured by a parameter q4 which is computed
by a sum over the deviation between each “bond angle” (there are no actual
bonds between the coarse-grained beads) and the perfect tetrahedral angle
arccos(−1/3) ≈ 109.471◦.

q4 = 1− C−1
4

√

∑

i<j

[

θij − arccos(−1

3
)
]2

, (3.2)

where θij is the bond angle between particle i, the reference particle, and
particle j, where i and j sum over the first four nearest neighbors of the ref-
erence particle. The bond angles are measured between the oxygen atoms in
the all-atom description and between the beads in the coarse-grained model.
C4 = 1.8165 rad is a constant chosen such that q = 0 when “bond angles” are
randomly distributed and q = 1 when the particles exhibit perfect tetrahedral
packing. As the tetrahedral packing becomes weaker, the value of q becomes
smaller. This definition is very similar to the parameter introduced in [126].
The difference is that our parameter measures the deviation from the “bond
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φ (1.155) γ (1.633) q̄4 P (q4 ≥ 0.7)
TIP3P AA 0.3512 (0.0009) 0.0251
TIP3P CG 1.120 1.617 0.2530 (0.0003) 0.0049
TIP3P PC CG 1.127 1.531 0.2525 (0.0003) 0.0048
SPC AA 0.3823 (0.0009) 0.0359
SPC CG 1.120 1.636 0.2592 (0.0003) 0.0059
SPC PC CG 1.128 1.575 0.2587 (0.0003) 0.0060
SPC/E AA 0.4109 (0.0009) 0.0479
SPC/E CG 1.121 1.643 0.2670 (0.0003) 0.0078
SPC/E PC CG 1.125 1.587 0.2662 (0.0003) 0.0071
POE 1.131 1.632 0.3142 (0.0004) 0.0251
POE PC 1.131 1.611 0.3238 (0.0004) 0.0297

Table 3.2: Structural properties of different water models: The results of the
all-atom (AA), the coarse-grained (CG), the pressure-corrected coarse-grained (PC CG)
models and the potential of extrapolation (POE) model, which optimizes the tetrahedral
packaging (see eq. 3.6 for definition), are shown. The properties presented in the table are
from left to right: φ (the ratio between peak position and first-well position), γ (the ratio
between second-well position and first-well position), tetrahedral packing parameter and
the probability that q4 is a large value (not less than 0.7). The statistical error is given in
parentheses.

angles” from the perfect tetrahedral angle rather than of the cosine values.
We chose this term due to the fact that it amplifies the region around the
perfect tetrahedral angle, which can easily be seen by calculating dq4/dθij.
The change of q4 in our formula is much bigger than the one in [126]. Also,
this definition can easily be extended to q8 and q12 for particle arrangements
on hcp and fcc lattices.

Back to the case of tetrahedral clusters, these can be characterized by two
typical distances. The first is the distance between the reference molecule
and the nearest neighbors (the center-corner distance), and the second is the
distance between pairs of nearest neighbors (the corner-corner distance). The
ratio between the second typical distance and the first distance is 2

√
2 :

√
3.

Not surprisingly, the ratio between the distances of two minima in coarse-
grained effective potential is roughly that number. This ratio is denoted by
γ and its values for the different coarse-grained models are listed in tab. 3.2.
It is clear that γ should not deviate from this perfect ratio too much, due
to the fact that it is needed to reproduce the tetrahedral packing in liquid
state. A minimum in the potential is always a favored distance between two
molecules.

We denote the ratio of the distance of the peak between two first minima
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ρ [ g
cm3 ] P [bar] κ

T
[10−10 m2

N
] D [10−9 m2

s
]

TIP3P AA 0.9846 1.00 (0.65) 5.76 (0.02) 5.9319 (0.0737)
TIP3P CG 8536 (0.67) 4.79 (0.02) 19.3899 (0.0556)
TIP3P PC CG 0.70 (0.68) 27.12 (0.51) 19.4417 (0.2585)
SPC AA 0.9769 0.82 (0.67) 5.28 (0.02) 4.4374 (0.0643)
SPC CG 8994 (0.72) 4.66 (0.02) 17.9753 (0.0355)
SPC PC CG 1.67 (0.72) 28.62 (0.61) 17.8028 (0.2597)
SPC/E AA 0.9984 0.76 (0.73) 4.56 (0.02) 2.7866 (0.0310)
SPC/E CG 9886 (0.81) 4.38 (0.02) 15.7114 (0.0351)
SPC/E PC CG 0.45 (0.82) 29.71 (0.74) 15.6021 (0.2622)
POE 0.9984 8982 (1.10) 4.78 (0.03) 5.8013 (0.1331)
POE PC 3.61 (1.12) 28.15 (0.92) 4.7760 (0.0053)
exp. (298 K) 0.99705 - 4.599 2.272

[127] [128] [129]

Table 3.3: Thermodynamic properties of different water models: The results of
the all-atom (AA), the coarse-grained (CG), the pressure-corrected coarse-grained (PC
CG) models and the potential of extrapolation (POE) model, which optimizes the tetra-
hedral packaging (see eq. 3.6 for definition), are shown. The properties presented in the
table are from left to right: density, virial pressure, isothermal compressibility and dif-
fusion constant. In parentheses are the statistical errors. The last line shows data from
experimental measurements from the literature.

and the first potential minimum by φ, its value is roughly 2 :
√
3. From the

geometrical side one can see the peak as a barrier to prevent other molecules
from entering the tetrahedral cluster. That is why it appears at the distance
when one mirrors the reference particle at the connection line of two of its
neighbors.

3.2.2 Effective Coarse-Grained Potentials

We performed NVT simulations for the all-atom water models TIP3P, SPC
and SPC/E using GroMaCS 3.3 [130]. 243 = 13834 molecules are studied
inside a cubic box with periodic boundary conditions. The intramolecular
bonds are kept rigid by the LINCS algorithm [113]. The temperature is ad-
justed to 300 K by a Berendsen thermostat [42], which was obviously not the
best choice due to the fact that the Berendsen thermostat strongly influences
the dynamics of the system. The densities (see tab. 3.3) of the systems are the
average densities obtained from NPT simulations of the same systems, where
the pressures were kept at one bar by the Berendsen barostat [42]. The long
range electrostatic interactions are calculated by the particle mesh Ewald
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Figure 3.1: Radial distribution function of all-atom models: Radial distribution
function between the oxygen atoms of the all-atom TIP3P, all-atom SPC and all-atom
SPC/E model at ambient conditions.

(PME) method [131]. Parts of the coarse-grained and pressure-corrected
coarse-grained simulations are carried out using the ESPResSo package [59]
due to the fact that it is more flexible and interactive than GroMaCS. Later
some of the routines used for this study were developed further with the
iterative framework of the VOTCA package (see sec. 2.3.6).

Our coarse-grained simulations contain 104 particles and the size of the
periodic simulation boxes is adjusted and fixed so that the densities are the
same as for the corresponding all-atom simulations. The cut-off is set to
0.7 nm, which contains most of the structure (see fig. 3.1). Temperature
is kept constant at 300K by a Langevin thermostat (see sec. 2.2.4) with
a friction constant of 5 ps−1. The systems are integrated at a time step of
0.004 ps. Thus, the results are targeted towards static properties. As the
thermostat can dramatically influence the dynamics, the diffusion constants
of the coarse-grained models are measured by simulations employing Gro-
MaCS 3.3 with the same system settings as for all-atom simulations (notably
the Berendsen thermostat) to ensure comparable dynamics.

The RDFs of all the employed all-atom models are shown in fig. 3.1. One
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Figure 3.2: Tetrahedral packing parameter of water: The distribution function of
the tetrahedral packing parameter q4 of all-atom (AA) water models and coarse-grained
(CG) water models. The results of pressure-corrected potentials are not plotted because
they are almost indistinguishable from those without pressure-correction.
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Figure 3.3: Radial distribution function of coarse-grained SPC/E water: Com-
parison between the RDF of all-atom SPC/E model (SPC/E AA), coarse-grained SPC/E
model (SPC/E CG) and pressure-corrected coarse-grained SPC/E model (SPC/E PC
CG). The all-atom and the coarse-grained RDFs coincide with each other quite well, while
the pressure-corrected RDF deviates slightly at the minima and maxima as the insertion
shows.

can see that the RDF of the SPC/E model has the strongest peaks and wells
while the RDF of the TIP3P model has the weakest structure. A similar
conclusion is reached for q4 by looking at the plot of the distribution of
tetrahedral parameter q4, see the dashed lines in fig. 3.2.

The derived coarse-grained models match the all-atom RDFs (only the
RDFs of SPC/E model are plotted in fig. 3.3) extremely well. The corre-
sponding effective potentials are plotted as solid lines in fig. 3.4, from which
it is observable that the larger magnitude of the peaks and wells in RDFs re-
sults in stronger peaks and wells in effective potentials. However, all coarse-
grained models produce a significantly weaker tetrahedral order than the
corresponding all-atom models as shown in fig. 3.2. SPC/E displays the
most pronounced tetrahedral packing and TIP3P presents the least, again in
agreement with the shape of the coarse-grained potential. The reason is that
the hydrogen bonds originating from the Coulomb interactions of the partial
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Figure 3.4: Effective coarse-grained potentials: Different effective coarse-grained
(CG) potentials of several water models generated by iterative Boltzmann inversion. Solid
lines correspond to those without pressure-correction (PC) and the dashed lines are those
with pressure-correction.
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charges of the molecule are replaced by isotropic potential wells interacting
with a single site. Our data shows that the tetrahedral packing for electric
interactions is stronger than for effective potentials. This effect is supported
by the fact that the life times of tetrahedral clusters (see sec. 3.2.3) also
decrease for the effective potentials.

We observe only a small discrepancy between the all-atom RDFs and the
pressure-corrected coarse-grained RDFs (see fig. 3.3) even though the effec-
tive potentials look quite different from those of the coarse-grained models
without pressure-correction, see fig. 3.4. Henderson [72] has shown that an
effective potential designed to reproduce a given RDF is unique up to a con-
stant. While this is a rigorous result, the coarse-graining procedure shows
that rather small variations in the RDFs can result in significant changes of
the potential. Despite the different effective potentials and a discrepancy in
γ between coarse-grained and pressure-corrected coarse-grained models (see
tab. 3.2), the distributions of q4 are nearly the same. Thus, they will not be
plotted in fig. 3.2 and we may refer the reader to the mean values and the
probability of large q4 in tab. 3.2.

As shown in tab. 3.3, the virial pressure of the coarse-grained models
does not agree with the underlying all-atom model. This significant devia-
tion reflects the fact that the coarse-grained models approximate a system
with significantly more degrees of freedom, more spatially varying and ef-
fectively anisotropic interactions. This is well known for coarse-grained sim-
ulations [125, 32]. All pressure-corrected coarse-grained models reproduce
the pressures of the all atom models within the error bars, supporting our
pressure-correction strategy, which was to apply the pressure-correction at
each step of the iterative Boltzmann inversion. When the RDF is approx-
imated well enough, we apply an iteration of pressure-correction to obtain
the correct pressure.

Nevertheless, in order to deal with a mixed all-atom and coarse-grained
simulation (AdResS scheme, see sec. 2.4) it is more appropriate to adjust the
compressibility rather than the pressure. One can determine the isothermal
compressibility of the system by the following finite difference method,

κT = − 1

V

(

∂V

∂p

)

T

≈ − 1

V

V + − V −

p+ − p−
. (3.3)

Here, we want to note that the resulting effective potential depends on the
temperature T and density ρ [125] for which the coarse-graining procedure is
carried out. This has been a well-known fact for over 10 years [26]. However,
since the compressibility is quite small and the system is reasonably big, it is
sufficient for this estimate not to account for any dependence of the coarse-
grained potential on the states {N, V +, T} and {N, V −, T}. As shown in
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tab. 3.3, the side effect of the pressure-correction is a strong deviation in the
isothermal compressibilities. The agreement between the isothermal com-
pressibilities of the all-atom system and the coarse-grained system without
pressure-correction is much better. The isothermal compressibility can also
be determined by the following formula [132]

ρkBTκT = 1 + 4πρ

∫

dr r2 [g(r)− 1] . (3.4)

The large deviations in the compressibility between the coarse-grained and
the pressure-corrected coarse-grained results show that the compressibility is
a very sensitive measure of the overall agreement between different RDFs.

And it also raises a valuable question: Is it possible to fit the pressure
and compressibility at the same time? And if yes, how? We will come back
to this point later, but let us first analyze the change of the involved time
scales.

3.2.3 Time Scales

In tab. 3.2 it is also shown that the intrinsic time scale of the coarse-grained
water models is approximately 4 times bigger than that of the all-atom sim-
ulations. One can calculate a so-called time scaling factor

s =
DCG

DAA

, (3.5)

to quantify this speedup, which is due to the softer interaction potentials
and the resulting reduced friction between molecules, as has already been
observed in the context of polymer melts [32]. This speedup leads to the
sampling of a bigger part of the phase space, but does not necessarily ensure
that the dynamics of the coarse-grained system resemble the dynamics of the
all-atom system.

Also the life time of the tetrahedral clusters has changed. We define
the life time (see tab. 3.4) of tetrahedral clusters as the length of the time
period, during which a cluster has a q4 larger than 0.7. This value ranges
from 0.04 ps up to 0.07 ps and the standard deviation is roughly the same as
the mean value. The life time of individual hydrogen bonds is significantly
longer, roughly 0.55 ps up to 1.36 ps. Of course the definition of a hydrogen

bond is somewhat arbitrary within these models. Taking the RDFs we count
a pair of molecules as connected by a hydrogen bond when the distance
of two oxygens is less than 0.31 nm. This definition is not a problem for
coarse-grained models, but obviously not truly adequate for all-atom models,
nevertheless it is still well suited for a comparison of the different models.
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Model tT [ps] tH [ps]
TIP3P 0.057 (0.059) 0.868 (0.928)
SPC 0.067 (0.072) 0.994 (1.120)
SPC/E 0.070 (0.073) 1.268 (1.544)
TIP3P CG 0.044 (0.042) 0.546 (0.456)
SPC CG 0.043 (0.040) 0.615 (0.527)
SPC/E CG 0.044 (0.045) 0.735 (0.654)
TIP3P PC CG 0.045 (0.046) 0.550 (0.459)
SPC PC CG 0.044 (0.043) 0.610 (0.530)
SPC/E PC CG 0.047 (0.043) 0.741 (0.664)
POE 0.061 (0.069) 1.306 (1.291)
POE PC 0.061 (0.072) 1.362 (1.380)

Table 3.4: Life time analysis of different water models: Life times of clusters of the
all-atom (AA), the coarse-grained (CG), the pressure-corrected coarse-grained (PC CG)
models and the potential of extrapolation (POE) model, which optimizes the tetrahedral
packaging (see eq. 3.6 for definition), are compared. Mean values are measured and stan-
dard deviations (not the statistical error) are given in parenthesis. tT is the life time of
a tetrahedral cluster, while tH is the life time of a hydrogen bond.

We conclude that the life times of the tetrahedral clusters and the life
times of a hydrogen bond for the coarse-grained models are in general smaller
than the value for the corresponding all-atom model. While the life times of
a hydrogen bond are around 40% smaller for the coarse-grained models the
life times of the tetrahedral clusters are only about 30% smaller. This effect
also supports the weaker tetrahedral packing of the coarse-grained models.

3.2.4 Optimizing the Tetrahedral Packing

Let us now come back to the question if we can find a potential that re-
produces the tetrahedral packing in the same way as the all-atom models.
The coarse-grained models, which fit the RDFs extremely well, have a much
weaker tetrahedral packing (see tab. 3.2).

In fig. 3.1 we find that the neighbor distribution of SPC/E displays
a weaker structure than that of the SPC model, while the TIP3P model
has a nearly flat distribution of neighbors beyond the first peak of the RDF.
Along with this the strength of the tetrahedral packing also increases from
TIP3P to SPC and even more to SPC/E (see fig. 3.2). The coarse-grained
potentials (see fig. 3.4) suggest a connection on how the tetrahedral packing
and the shape of the potentials are correlated.
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From the analysis in sec. 3.2.1, one knows how to obtain a modified effec-
tive potential that can produce better tetrahedral packing, namely by keeping
the position of the wells and the peaks, but varying their height/depth. We
find that the distribution of q4 is insensitive to the change of the depth of
the first well as long as the barrier is lower than a critical value of roughly
kT ≈ 2.5 kJ/mol. When we increase the height of the peak or the depth
of the second well, the tetrahedral packing also becomes more pronounced.
This effect may be understood by the fact that the difference between the
peak and the second well acts as a barrier, which prevents more particles
from entering the first neighbor shell. This result suggests that in order to
reach better tetrahedral packing, we have to increase the depth of the second
well and the height of the peak of the potential while keeping them at the
right position.

To check the ideas raised in the previous paragraph, we manipulate the ef-
fective coarse-grained potentials by linearly extrapolating two coarse-grained
potentials under the constraint of keeping the region of equality nearly un-
changed. Since it does not matter which potential is used as base potential
in the extrapolation we have chosen a combination of the coarse-grained SPC
and coarse-grained SPC/E potential. The extrapolation can be described by

VPOE(r) = VSPC(r) + λ(r)(VSPC/E(r)− VSPC(r)) , (3.6)

where λ(r) is a first order continuously differentiable function, which was
generated by cubic splines. The requirement of smoothness of λ(r) is the
necessary and sufficient condition for a continuous effective force resulting
from the potential VPOE(r). A value 0 < λ < 1, an interpolation, allows us
to locally change the potential between the two original coarse-grained poten-
tials considered. A value λ > 1, an extrapolation, corresponds to adding even
more SPC/E structure. Outside this region we use the same potential as for
SPC/E (λ = 1). Negative values of λ point more towards the coarse-grained
version of the TIP3P model.

The weight function λ(r) used in this study is plotted in fig. 3.5, where
the values of λ at the position of the first well, the peak and the second well
are 3, 3 and 8 respectively.

The RDF obtained by a simulation using the extrapolated potential is
shown in fig. 3.6. Thermal and structural properties of this potential can be
found in tab. 3.3 and tab. 3.2. From fig. 3.7 we deduce that the extrapolated
potential can only fit the all-atom TIP3P result when q4 ≥ 0.7. There is still
an obvious discrepancy for smaller q4 values. We could improve the fit of
the distribution of smaller q4 by increasing the weight function λ, but then
the agreement at large q4 values would be destroyed. In practice, the region
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Figure 3.5: Potential of extrapolation: Weight function λ(r), the potential of extrap-
olation (POE) and its pressure-corrected version (POE PC) are shown. These potentials
are plotted in comparison with coarse-grained (CG) and pressure-corrected coarse-grained
potentials (PC CG) of SPC and SPC/E.
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Figure 3.6: Radial distribution function of the potential of extrapolation: Com-
parison of the RDF of coarse-grained (CG) models and the extrapolated potential (POE).
The extrapolated potential model is much more structured than all the other models.
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Figure 3.7: Tetrahedral packing of the potential of extrapolation: Distribu-
tion of tetrahedral packing parameter q4 of the extrapolated potential (POE) model and
its pressure-corrected version (POE PC), which optimizes the tetrahedral packaging (see
eq. 3.6 for definition), compared to all-atom TIP3P model (TIP3P AA) and coarse-grained
TIP3P model (TIP3P CG), which has the weakest tetrahedral packaging, and the all-atom
SPC/E model (SPC/E AA) and coarse-grained SPC/E model (SPC/E CG), which has
the strongest tetrahedral packaging.
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of large q4 (where clusters are tetrahedrally well packed) is more important
than the region of small q4. Thus we focus on changes of the coarse-grained
potentials, which better fit q4 in the [0.7, 1] interval. For this new potential,
fig. 3.6 shows that the RDFs deviate strongly. With deeper wells and a higher
peak we fit the higher order structural aspects of the liquid better, but intro-
duce more structure in the RDFs. It seems impossible to fit both the RDF
and the q4 distribution at the same time with isotropic central potentials.

Even considering deeper potential wells and higher peaks, we can not
reach the q4 distribution of the all-atom SPC and SPC/E models. Since the
strength of the potential wells is then comparable to kT ≈ 2.5 kJ/mol, the
coarse-grained water is no longer a homogeneous liquid.

Surprisingly, the isothermal compressibility of the extrapolated potential
is preserved very well though the fit of the RDF becomes poor. For the coarse-
grained SPC and SPC/E model the virial pressure is too large, which has
been shown above for all non-pressure-corrected coarse-grained potentials.
To obtain a coarse-grained model that can reproduce the all-atom pressure,
one can also extrapolate between pressure-corrected coarse-grained SPC and
SPC/E models instead of between the original coarse-grained potentials. But
then the resulting pressure is too low due to the stronger structure in the
potential. To solve this problem, we apply a tail correction to the resulting
potential and vary the size of the support of the correction to arrive at the
correct pressure. In tab. 3.3 we show that the pressure is correct now, but
the compressibility is wrong, which is the same observation for all pressure-
corrected models. From the dashed lines in fig. 3.6 and fig. 3.7, we find no
obvious difference in the structural properties between the pressure-corrected
extrapolated potential and the non-pressure-corrected potential.

3.2.5 Summary

It was shown how various simple rigid water models can be coarse-grained in
a straight forward way by replacing one molecule by a coarse-grained bead.
An efficient coarse-grained interaction between the oxygen atoms was derived
by the inverse Boltzmann method, which naturally gives a coarse-grained
model a very similar structure and nearly the same compressibility as the all-
atom model. Under the condition of losing the agreement of compressibility,
we were able to adjust the pressure to the same value as in the all-atom
case by a simple linear correction. It seems to be, however, impossible to
simultaneously adjust the pressure and the compressibility by simple isotropic
two-body potentials.

The lifetime analysis of the tetrahedral clusters showed that for all the
models a cluster lives 50 fs on average, which makes our approach of coarse-
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graining much more physical than the idea of replacing five water molecules
(one tetrahedral cluster) by a coarse-grained bead. The lifetime gives a rough
estimate of the maximal physical timescale of these kinds of configurations.

We also showed how to improve the tetrahedral packing of coarse-grained
models by introducing a higher barrier in the coarse-grained potentials. This
also leads to more structure in the RDF. This is why we think good tetrahe-
dral packing and conserved structure is not possible at the same time with
such a simple spherical interaction. In general for all these coarse-grained
potentials there are two characteristic length ratios. First, the ratio of the
first well to the second well, which is also the ratio between the nearest and
the second nearest neighbor distances in the tetrahedral cluster. Second, the
ratio of the first well to the first peak, which prevents molecules from entering
the first neighbor shell.

Altogether such a coarse-graining procedure leads to an increase of com-
putation speed by a factor of 10 (9 Coulomb + 1 Lennard Jones vs. 1
tabulated interaction) plus a gain due to the lack of electrostatic interaction
and the four times larger intrinsic timescale. This accumulates to a speedup
of the order of 50 in computer time. While for small systems this is not
decisive, for huge simulations of e. g. biomolecular systems with surrounding
water this will be crucial in many cases. Of course models with just isotropic
interactions can not capture all properties compared to more complicated
ones. But this is the same for all coarse-grained or simplified models and
in order to overcome such shortcomings links to other approaches have to
be employed. One possibility is given by the AdResS method (see sec. 4.2),
where all atom simulations and coarse-grained simulations are coupled in a
way that there is a free exchange of molecules and their representation. For
the effect of long range electrostatic interactions the model can be linked to,
e. g. a fast Poisson-Boltzmann solver [133]. However, all these extensions re-
quire the detailed understanding of the possibilities and limitations of both
the underlying atomistic and coarse-grained models. That is why we will
now discuss more advanced coarse-graining techniques, for water and other
molecules.

3.3 Other Coarse-Graining Techniques

After we have studied different water models in the previous section, we
will focus on different coarse-graining techniques. First, we will come back
to water, as it is from the coarse-graining point of view one of the easiest
models one can imagine. Nevertheless, it is much too simple to understand
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Figure 3.8: Coarse-grained SPC/E Water: (a) Coarse-grained potentials for SPC/E
water obtained using different coarse-graining techniques. (b) Corresponding radial dis-
tribution functions. (c) Average error of the potential update function versus number of
snapshots used for calculating the update function. (d) Root mean square deviation of
reference and current radial distribution function versus iteration step. One can see that
IMC converges faster than IBI. Inset of (a) shows the coarse-grained representations of a
single water molecule, the parameters used can be found in tab. 3.1.

some effects going on in coarse-graining that is why we will also take a look
at methanol, propane and hexane.

3.3.1 Comparative coarse-graining of SPC/E Water

In this section we coarse-grain the SPC/E water model again using different
coarse-graining techniques, in principal every model from the previous section
could be used. But we have chosen to study the SPC/E water model again
due to the fact that it exhibits the most structured pair distribution function
of all previous studied rigid water models (see fig. 3.1) and we will later use
the SPC/E model in an adaptive resolution simulation to solvate fullerenes
(see sec. 4.2). The corresponding parameters of this 3-site model are given
in tab. 3.1. In contrast to the previous section, we used a one-site coarse-
grained representation with a pair potential U(Rij), where Rij connects the
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centers of mass of water molecules i and j and not the oxygens.
The all-atom system consisting of 2180 water molecules was first equili-

brated in the NPT ensemble at 300K and 1 bar for 100 ns using the Berendsen
thermostat and barostat [42]. The last 80 ns were used to determine the equi-
librium box size of 4.031 nm, which was then fixed during the 45 ns production
run in the NVT ensemble using a stochastic dynamics algorithm [134]. Later
it turned out that the change of the thermostat, from Berendsen to stochastic
dynamics (a Langevin thermostat), will lead to a pressure in NVT simula-
tion slightly higher than 1 bar. However, as the pressure of coarse-grained
simulations is anyway to high this is a minor effect. For all further analysis,
only the last 40 ns were used. The radial distribution function was calculated
using a 0.01 nm grid spacing. The snapshots were output every 0.4 ps.

Force matching potentials were calculated using blocks of 6 snapshots
each. Spline grid spacing of 0.02 nm was used in the interval from 0.24 to
1 nm. For the iterative procedures, the potential of mean force was taken
as an initial guess for the interaction potential. The coarse-grained box had
the same system size as in the atomistic simulations. Simulations of the
coarse-grained liquid were done using a stochastic dynamics algorithm [134].
300 iterations of 100 ps each were performed when using IBI. For IMC we
used 10 iterations of 500 ps each. Additionally, two iterations of triangular
smoothing were applied to the IMC potential update, ∆U . The cut-off was
chosen at 0.9 nm with a grid spacing of 0.01 nm.

The reference radial distribution function, gref(r), coarse-grained poten-
tials and corresponding radial distribution functions are shown in fig. 3.8a,b.
IBI and IMC give practically the same interaction potential. Although the
force-matched potential has a very similar structure with two minima, the
corresponding radial distribution function is very different from the target
one. Possible reasons for these discrepancies are discussed in the litera-
ture [79, 125, 73] and stem from the fact that FM aims to reproduce the
many-body potential of mean force, which does not necessarily guarantee
perfect pairwise distribution functions, considering the fact that the basis
sets in the coarse-grained force field may be limited.

Note that all three methods lead to a different pressure of the coarse-
grained system: 8000 bar (IBI), 9300 bar (IMC), and 6500 bar (FM). Different
pressures for the iterative methods are due to different accuracy of the po-
tential update. Indeed, small changes of pressure can significantly affect the
potential, especially its long tail [64, 81]. However, they hardly change the
radial distribution function due to the small compressibility of water. One
can improve the agreement between the iterative methods by using pressure
correction terms for the update as we have done in the previous section.

The performance of the iterative methods depends on two factors: (i) the
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average (over all bins) error of the potential update ǫ∆U and (ii) the number
of iterations required for convergence. We define the average error as

ǫ∆U =
1

N

N
∑

i=0

ǫ(∆U(ri)) , (3.7)

where N is the number of bins and ǫ(∆U(ri)) is the error of the update
function at a separation ri. ǫ(∆U(ri)) was calculated using a Jackknife anal-
ysis [135].

The average error of the potential update is shown in fig. 3.8c as a function
of the run length. One can see that, for both methods, the error decreases as
1/
√
L, where L is the number of snapshots used for averaging. However the

prefactor for the IBI update error, which is based on the radial distribution
function, is at least ten times smaller than for the IMC update error, which
makes use of cross-correlations of Sα. This observation implies that, in order
to have the same accuracy of the update function, IMC needs significantly
longer sampling.

This disadvantage is of course compensated by the efficiency of the update
function, which is assessed by computing the root mean square deviation,
∆gn, of the current and target radial distribution functions

∆g2n =

∫

[

gref(r)− g(n)(r)
]2
dr . (3.8)

∆gn is plotted as a function of the number of iterations, n, in fig. 3.8d. It is
clear that IMC converges much faster than IBI, though the root mean square
deviation saturates after some number of iterations.

3.3.2 Comparative coarse-graining of Methanol

Liquid methanol (see the inset in fig. 3.9) is the second example of coarse-
graining of non-bonded interactions that is presented here. In fact, FM has
already been used to coarse-grain this system [81] and, contrary to water,
the liquid structure (radial distribution function) is well reproduced by the
FM coarse-grained potential. In addition, the excluded volume of methanol
is larger than that of water and the undulations of the radial distribution
function extend up to 1.5 nm. As we will see, this leads to pronounced finite
size effects for IMC, since it has a non-local potential update. FM and IBI
do not have this problem, since the IBI potential energy update is local and
FM is based on pair forces. The range of the latter is much shorter than
the correlation length of structural properties, which may propagate over the
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Figure 3.9: Coarse-grained methanol: (a) Coarse-grained potentials for methanol
using different coarse-graining techniques. (b) Corresponding radial distribution functions.
(c) Coarse-grained potentials using 10 IMC iterations for simulation boxes with 1000, 2000
and 8000 methanol molecules (cubic box with length 4.09 nm, 5.15308 nm, and 8.18 nm)
equilibrated at the same density. (d) Root mean square deviation of reference and the
current radial distribution function versus number of iterations. Similar to liquid water,
IMC converges faster than IBI. The convergence saturates and the saturation error strongly
depends on the system size. The inset of (a) shows the Van der Waals excluded volume
and coarse-grained representations of a methanol molecule.
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boundaries for small boxes. Such correlations could be undulations of the
radial distribution function.

Simulation setup parameters were taken from the literature [81] and
OPLS [136] all-atom force field was used. Atomistic simulations were per-
formed with 1000 methanol molecules in a cubic box (4.09 nm box size) at
300K using the Nose-Hoover thermostat [137, 138]. The system was equili-
brated for 2 ns followed by a production run of 18 ns. The reference radial
distribution function was calculated using snapshots every 0.5 ps and is shown
in fig. 3.9b.

The FM potential was calculated using blocks of 6 frames each and a
spline grid of 0.02 nm. With this potential, coarse-grained simulations were
performed using a stochastic dynamics integrator, 1000 beads and with the
same box size and the same temperature as in the atomistic simulations.
The system was equilibrated for 40 ps followed by a production run of 160 ps.
Snapshots were stored every 5 ps and used to calculate the radial distribution
function.

For the iterative procedures, the potential of mean force was taken as
an initial guess. The cut-off was chosen at 1.54 nm with a grid spacing of
0.01 nm. For IBI, 300 iterations were performed using stochastic dynamics
with the same parameters used in the FM-based procedure. The IMC iter-
ations were performed with 8000 molecules and a box size of 8.18 nm. The
total length of the run was 1 ns and snapshots were stored every 0.2 ps. Two
smoothing steps were used in each iteration step for the potential update,
∆U .

The coarse-grained potentials for all methods are shown in fig. 3.9a. In
spite of small differences between the coarse-grained potentials, the agree-
ment between the reference and coarse-grained radial distribution functions
is excellent, as can be seen in fig. 3.9b.

It is important to mention that the IMC method, which has a non-local
update, is prone to systematic errors due to finite size effects and hence
requires much larger simulation boxes in order to calculate the potential
update. This is due to artificial cross-correlations of Sα at large distances,
which lead to a small difference of tails between the coarse-grained and the
reference radial distribution functions and as a consequence, to a much higher
pressure of the coarse-grained system and a significantly different coarse-
grained potential. In contrast, IBI and FM work well with system sizes in
the order of two radial distribution function cut-off lengths.

To illustrate this point, we prepared simulation boxes of three different
sizes, with 1000, 2000 and 8000 methanol molecules The simulations were
performed with cubic boxes with box lengths of 4.09 nm, 5.15308 nm and
8.18 nm and simulation times of 3 ns, 2 ns and 1 ns, respectively. The IMC
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iterative procedure was repeated until the potentials converged, and these
are shown in fig. 3.9c. One can see that the potentials significantly differ
from each other. These differences lead to small deviations in the tail of the
radial distribution function, which, however, vanish, in a systematic way, for
bigger boxes, as illustrated in fig. 3.9d, where we plot the integral of the
difference of the reference and current distribution functions.

A more detailed analysis has shown that, for small boxes, an additional
linear term in the potential update at large separations appears. To deter-
mine the origin of this term, ∆U was calculated using the full matrix Aαβ

as well as only its diagonal elements. The potential after 50 IBI iterations
was taken as an initial guess. Without the off-diagonal elements ∆U was
small once the reference and coarse-grained radial distribution functions were
matching each other. Inclusion of the off-diagonals elements always resulted
in an additional, practically linear, term in the potential update, which be-
came smaller for large boxes. Based on this observation we concluded that
the off-diagonal elements of the matrix Aαβ systematically change with the
box size.

To summarize, IMC should be used with care for small systems. The
potential update (or the coarse-grained potential) must be converged with
respect to the simulation box size. In the case of methanol coarse-graining, a
box of size three times the radial distribution function cut-off was not enough
to achieve the converged potential for IMC, even though this is sufficient for
IBI and FM methods.

3.3.3 Comparative coarse-graining of Liquid Propane

So far we have illustrated coarse-graining of non-bonded degrees of freedom
using liquid water and methanol as examples. Here we show how bonded

interactions can be coarse-grained by deriving a united atom model, i. e.
hydrogens embedded into heavier atoms, from an all-atom model of liquid
propane. The united atom model we use here shall not be confused with the
united atom models commonly used in the atomistic force-field community,
for example OPLS-UA force-field [136]. The latter models map the poten-
tials, which are analytical functions of bonds, angles, and dihedral angles,
onto thermodynamic properties of the corresponding substances. In our case
coarse-grained potentials are tabulated functions of coarse-grained variables
and only the mapping, embedding hydrogens into heavier atoms, is similar
to that of the united atom force-fields. The mapping scheme, as well as the
bonded coarse-grained variables, in this case two bonds, b, and one angle, θ,
are shown in the inset of fig. 3.10. Note that this coarse-graining scheme has
two different bead types: an inner bead, of type B, with two hydrogens, and
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Figure 3.10: Coarse-grained propane: (a) Non-bonded interaction potentials UAA,
UBB, and UAB for propane obtained with IBI and FM methods. For clarity, FM poten-
tials are offset along the y axis. (b) Corresponding radial distribution functions, plotted
together with the atomistic radial distribution function. (c) Bond potential obtained for a
single molecule in vacuum by Boltzmann-inverting the corresponding distribution function,
using FM for a single propane molecule in vacuum and force matching for liquid propane.
(d) Angular coarse-grained potentials. FM-based distributions for a single molecule and
the liquid are on top of each other. The inset of (c) shows the correlations of b and θ.
The inset of (d) shows all-atom and coarse-grained representations of a propane molecule,
bead types, and coarse-grained bonded degrees of freedom (bond b and angle θ).
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two outer beads, of type A, with three hydrogens. As a result, three types
of non-bonded interactions, UAA, UBB, and UAB must be determined.

The atomistic simulations were performed using the OPLS all atom force
field [136]. A box of liquid propane was first equilibrated at 200K and 1 bar
in the NPT ensemble for 10 ns using the Berendsen thermostat and baro-
stat [42]. The equilibrated box of the size 4.96337× 5.13917× 4.52386 nm3

was then simulated for 10 ns in the NVT ensemble at 200K using velocity
rescaling with a stochastic term [43]. No bond constraints were used during
the simulations and hence the integration time step was 1 fs. Snapshots were
written every 1 ps.

In the case of iterative methods, the bonded potentials (bond and angle)
were calculated by Boltzmann-inverting the corresponding distribution func-
tions of a single molecule in vacuum. The potentials have to be normalized
with the right volume factor (see eq. 2.90). The propane molecule in vacuum
was simulated in an stochastic dynamics run [134] for 100 ns with snapshots
stored every 2 ps. Non-bonded potentials were iteratively refined by using
IBI with a grid spacing of 0.01 nm and a cut-off of 1.36 nm for A-A, A-B
and 1.38 nm for B-B interaction types, respectively. The run length for each
iteration was 50 ps with snapshots written every 0.5 ps. At every iteration
step only one interaction type was corrected. When using the FM method,
both bonded and non-bonded potentials were obtained at the same time,
since FM does not require the explicit separation of bonded and non-bonded
interactions.

The obtained potentials are shown in fig. 3.10a,c,d. FM and Boltzmann
inversion-derived bond and angle potentials (fig. 3.10c,d) perfectly agree with
each other. The non-bonded potentials, shown in fig. 3.10a, are not com-
pletely identical, but have similar shapes and barrier heights. This of course
results in a good reproducibility of the propane liquid structure by the FM-
based coarse-grained potentials, as can bee seen from the radial distribution
functions shown in fig. 3.10b. Again, as expected, IBI reproduces the refer-
ence radial distribution functions exactly.

To summarize, the united atom model of liquid propane is an ideal exam-
ple of coarse-graining where the structure- and force-based methods result
in similar bonded and non-bonded interaction potentials. As we will see
later, this is due to (i) the completeness of the basis set used to construct
the coarse-grained force-field; and (ii) independence of bond and angular de-
grees of freedom. The latter can be understood with the help of a histogram
showing the correlation of b and θ, depicted in the inset of fig. 3.10c. In the
next section we will look at coarse-graining of a single molecule of hexane,
for which this completeness of the basis set is not the case.
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Figure 3.11: Coarse-grained hexane: (a) Coarse-grained angular potentials obtained
using Boltzmann inversion (no iterations) and FM for a single hexane molecule in vacuum.
The inset of (a) shows a hexane molecule and its coarse-grained representation. Arrows
indicate the directions of the forces on three beads for a specific snapshot. (b) Probability
density (probability distribution normalized by the interval) obtained from the atomistic
run, as well as from the runs using coarse-grained angular potentials. The inset of (b)
shows the correlation of b and θ.

3.3.4 Angular Potential of a Hexane Molecule

Another example we would like to discuss shortly is the angular potential of
a hexane coarse-grained into a three-bead chain, with two carbon atoms per
bead (see the inset in fig. 3.11a). A detailed analysis of the coarse-grained
potentials of hexane can be found in the thesis of V. Rühle [86]. Atomistic
simulations of a single hexane molecule in vacuum were performed using the
all-atom OPLS force field and a stochastic dynamics integrator [134]. The
run length was 1000 ns and snapshots were stored every 2 ps.

The coarse-grained angular potential was again obtained by Boltzmann-
inverting the angular distribution function or by using the FMmethod. In the
case of FM, we used blocks of 50000 frames each, a spline grid of 0.05 nm and
sampling in the θ ∈ [1.6, 3.14] interval. Both coarse-grained potentials are
shown in fig. 3.11a. The corresponding distribution functions, together with
the reference function obtained from the atomistic simulations, are shown in
fig. 3.11b.

It is obvious that the distribution, which corresponds to simple Boltzmann
inversion, is practically identical to the reference distribution, while the FM-
based distribution samples small angles much more often, which is a direct
consequence of a very deep local minimum in the angular potential at these
angles. It is easy to understand why FM fails to predict the relative height
of this minimum. On a coarse-grained level the change of the angle from
large to small values corresponds to the reorientation of the dihedral angles
at the atomistic level. This reorientation results in instantaneous forces, ~f1,

96
Rev. 292(e47a2e8ad7a2) from 2012-02-25



3.3. OTHER COARSE-GRAINING TECHNIQUES

~f2, ~f3, on the beads, which have an out of plane component, where the plane
is defined by the centers of the beads (see also the inset of fig. 3.11a). The
coarse-grained potential, however, has only an angular term, Uθ, and hence
can only capture forces, which lie in the plane in which the angle θ is defined.
Hence, only the projections of the forces on this plane are used in FM, and
this clearly leads to underestimation of the position of the second minimum,
since the work conducted by the out-of-plane forces is completely ignored. For
condensed phase systems, the error introduced by the off-plane component
of the force might be compensated by some other pair interactions. In this
particular case, however, coarse-graining of liquid hexane with both bonded
and non-bonded degrees of freedom treated simultaneously results in a very
similar angular distribution to that of a single molecule in vacuum [86].

Additionally, this mapping scheme does not have independent variables,
e. g. bond and angle degrees of freedom are coupled, as can be seen from the
Ramachandran plot shown in the inset of fig. 3.11(b). This means that, even
though Boltzmann inversion reproduces correct distributions, sampling of
the configurational space is incorrect because of the lack of cross-correlation
terms in the coarse-grained potential.

This example clearly shows that coarse-graining shall be used with un-
derstanding and caution, the methods should be cross-checked with respect
to each other, as well as with respect to the reference system.

3.3.5 Summary

The fact that different coarse-graining techniques turn out to be best suitable
for specific systems is due to their different theoretical concepts, as well as
the underlying assumptions. Generally it appears that the simplest method,
iterative Boltzmann inversion, is the most reliable one. This has several rea-
sons, first of all because correlations between different distances and particle
types are neglected, much less statistics is needed and artificial correlations
due to finite size effects in system size and sampling time can not occur. Sec-
ond, the simplicity of the method allows for a better tuning of the iterative
process. Nevertheless, for coarse-grained simulations, in which not only the
structural properties are important, force matching can be more appropri-
ate. Also due to the fact that for more complicated systems the iterative
nature of some of the techniques can lead to a much higher consumption in
computer-time. Nonetheless, none of the techniques allows to have a real
influence on the change of the time scale of the coarse-grained system, that
is why we will discuss in the next section how to do this again using water
as an example.
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3.4 Dynamics of Coarse-Grained Water

Influencing the dynamics of a coarse-grained system can be important when
modeling diffusive processes in AdResS simulations [139] and to obtain con-
sistent fluxes in triple-scale simulations [140]. In this section we show how
this is done for coarse-grained TIP3P water, but this mechanism can be
applied to all one-site coarse-grained models.

3.4.1 Atomistic Model

All-atom water NVT simulations at ambient conditions are performed us-
ing a rigid TIP3P water model with a bond angle of 112.19◦ [124]. The
electrostatics is described by the reaction field method [141, 142], in which
all molecules outside a spherical cavity of a molecular based cut-off radius
Rc = 9 Å are treated as a dielectric continuum with a dielectric constant
ǫRF = 80. Here, in order to reproduce the hydrodynamics correctly we
employed the DPD thermostat (see sec. 2.2.5) with the friction constant
ζ‖ = 0.038 ps−1 and cut-off radius as for the reaction field. The constant
ζ‖ is small compared to the intrinsic friction coefficient ξ of the TIP3P wa-
ter system, i. e. ξ = 288.6 ps−1, so that this stochastic approach generates
a dynamics comparable to NVE [139]. Basically, the setup of the water sim-
ulation was exactly the same as in [98] that is why the TIP3P model used
here had an angle of 112.19◦ [124], which makes it, as mentioned in sec. 3.2,
a modified TIP3P model. We did not correct the bond angle due to the fact
that the same setup was later used in [143].

3.4.2 Coarse-grained Model

For the coarse-grained water simulations with the Transverse DPD thermo-
stat we have employed the single-site water model from [123], which repro-
duces essential thermodynamics and structural properties, e. g. the pressure,
density, and radial distribution functions, of the all-atom rigid TIP3P water
model at standard conditions. Other simulation details are the same as given
in [123].

3.4.3 Results

Having shown that the new thermostat enables us to tune the diffusion con-
stant and viscosity of a simple liquid (see sec. 2.2.8) we apply it to a slightly
more important biophysical example, i. e. liquid water at ambient conditions.
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Figure 3.12: Radial distribution functions of the modified TIP3P water: The
center of mass radial distribution functions of the all-atom (ζ‖ = 0.5 ps−1, ζ⊥ = 0) and
several coarse-grained simulations (ζ‖ = 0 and ζ⊥1 = 0.5 ps−1, ζ⊥2 = 0.75 ps−1 and ζ⊥3 =
1.0 ps−1).

We first check that the structural properties do not depend on the ther-
mostat and also that we obtain consistency between the coarse-grained and
atomistic simulations. The center of mass radial distribution functions of the
all-atom and coarse-grained system using different values of ζ⊥ match within
the line thickness (see fig. 3.12).

There is an intrinsic time scale difference in the diffusive dynamics of the
coarse-grained water system, because of the reduced number of DOFs and
the much smoother interactions. For this reason the self-diffusion constant
for the coarse-grained water model is larger than the corresponding all-atom
one. It is important to note that the diffusion dynamics depends on the
used thermostat and its friction constant that is why a speedup between
2, for a Langevin thermostat [123], and 4, for a Berendsen thermostat (see
sec. 3.2), is possible.

Due to correct hydrodynamics the standard DPD thermostat makes the
diffusive dynamics less dependent on the friction constant. However, in this
case we want to retain the diffusive dynamics of the all-atom model and just
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change the one of the coarse-grained model. We used ζ⊥ = 0.75 ps−1 for the
Transverse DPD thermostat (ζ‖ = 0) to match the diffusion constant of the
coarse-grained water model to the corresponding value D = 3.2 · 10−5 cm2/s
(see fig. 3.13) obtained from the all-atom simulation with the standard DPD
thermostat (ζ‖ = 0.038 ps−1). One may raise the question, why the friction
constant in the atomistic simulation is an order of magnitude smaller than
the one in the coarse-grained simulation? But this is just due to the fact that
the diffusive dynamics is nearly independent of the friction constant ζ‖ of the
standard DPD thermostat, and so this value of ζ‖ in atomistic simulation is
somewhat arbitrary and the diffusion constant will not decrease dramatically,
if we increase the friction constant by a factor of 10. The value of 0.038 ps−1

was just chosen due to the reference simulation related to [139].
With a friction strength of ζ⊥ = 0.6 ps−1, which is, as desired, very close

to the above value for matching the diffusion constants, we were also able
to match the viscosity to the desired value η = 0.5 ± 0.1 · 10−3 Pa · s−1 for
the TIP3P water model from our atomistic simulation with standard DPD
thermostat (ζ‖ = 0.038 ps−1). In this case the characteristic times for the
atomistic model are much longer than the time scale of the shearing (1/γ̇).
Therefore, even with a shear rate of γ̇ = 0.01τ−1, where τ is 1.579 ps, we are
in the no shear limit and hence no extrapolation is required. The obtained
diffusion constants and viscosities are in good agreement with the published
data [144]. The difference in transverse friction constant ζ⊥ for fitting the dif-
fusion constants and viscosity can be explained by the fact that the viscosity
was measured in a NEMD simulation while the diffusion constant in equi-
librium simulations. The shearing can lead to extra rotation of the particles
and takes over some work of the thermostat, which corresponds to a smaller
friction constant. Nevertheless, the better approach would be to study the
viscosity in the Green-Kubo picture [53, 54] by looking at the correlation of
the stress tensor.

3.4.4 Summary

By employing the new thermostat one can reproduce both the structure and
the diffusive dynamics of the all-atom liquid water with the single-site coarse-
grained water model. This is essential if one wants to synchronize the time
scales of the all-atom and coarse-grained regimes in the adaptive resolution
scheme (see sec. 2.4).

We have shown that this Galilean invariant local thermostat can be used
in coarse-grained simulations to tune the diffusion constant and viscosity of
the system to the desired values. This can be done in an iterative fashion
using the iterative framework of VOTCA (see sec. 2.3.6.2). With this ex-
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Figure 3.13: Diffusion process for different friction constants: The mean square
displacements over time plot of the all-atom (ζ‖ = 0.038 ps−1, ζ⊥ = 0) and several coarse-
grained simulations (ζ‖ = 0 and ζ⊥1 = 0.5 ps−1, ζ⊥2 = 0.75 ps−1 and ζ⊥3 = 1.0 ps−1).
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tended DPD thermostat one has the possibility of reproducing the diffusive
dynamics of the atomistic system in a coarse-grained simulation.
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Chapter 4

Adaptive Resolution
Simulations

After we have discussed properties of several coarse-grained water models
we will put them to use in the adaptive resolution scheme. Since AdResS is
a rather complicated method and has a relatively short history of develop-
ment we will discuss some technical aspects of the tetrahedral liquid, which
was devised as a first test system for AdResS.

The AdResS method [21] is a scale-bridging method used in molecular
simulations and soft matter studies. So far it has been applied to dense
systems of the tetrahedral liquid [93] and to a rather small system of liquid
TIP3P water [123, 139]. It has been used to couple atomistic to continuum
simulations via an intermediate coarse-grained level, thus combining three
scales [140]. The way it is implemented in ESPResSo is described in sec. 2.4.6.

4.1 Tetrahedral Liquid

A fluid made of tetrahedral molecules [21] is the most suitable case to demon-
strate AdResS itself, the interface correction, and the action of thermody-
namic forces.

The system is composed of 2520 molecules, each consisting of four atoms.
All atoms interact according to a purely repulsive, shifted 12-6 Lennard-Jones
potential:

U ex
LJ(riαjβ) =

{

4ǫ
[

(σ/riαjβ)
12 − (σ/riαjβ)

6 + 1
4

]

: riαjβ ≤ 21/6σ
0 : riαjβ > 21/6σ

, (4.1)

while the atoms within a molecule are bonded by an additional attractive
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finitely extensible nonlinear elastic (FENE) potential:

U ex
FENE(riαjα) =

{

−1
2
kR2

0 ln [1− (riαjα/R0)
2] : riαjβ ≤ R0

∞ : riαjβ > R0
, (4.2)

where i and j are the atoms belonging to molecules α and β, respectively.
For this case we chose σ = ǫ = 1, k = 30ǫ/σ2 and R0 = 1.5σ. The molecule
in the high resolution we call “explicit”. In the coarse-grained representation
the molecule is replaced by a spherical bead, which interacts via a tabulated
interaction.

The box dimensions, in units of the fundamental length σ, are 36×20×20,
split in the x direction. The explicit and the coarse-grained region have the
same size of 6 reduced units. To show the influence of the force interpolation
on the density, the size of the hybrid region was chosen twice the size of the
explicit one, dhy = 12.

On the contrary, the coarse-grained interaction consists of a one-site tabu-
lated potential able to reproduce satisfactorily the radial distribution function
and the state point of the liquid [21].

For a comparison of the basic structure of the simulations, fig. 4.1 shows
the radial distribution functions for the centers of mass of the molecules in
the explicit and AdResS simulations (normal, interface corrected and under
the effect of the thermodynamic force).

The small deviations at the peaks of the distribution can be removed by
improving the coarse-grained potential of the tetrahedral liquid. However,
as the deviations are less than 5% one basically sees that the structure is not
influenced by the different correction methods. This is clear due to the fact
that the coarse-grained and explicit systems already have the right radial
distribution and only the distribution in the hybrid zone is violated. For
that reason it is more suitable to look at the density profile.

The density profile is defined as the number of particles per volume, where
we split the volume in the same direction as the resolution with AdResS (x).
In fig. 4.2 we show the density profiles of the simulations for three cases:
(a) simple AdResS interpolation, (b) AdResS with interface-pressure correc-
tion and (c) the same system under the effect of the thermodynamic force.
The thermodynamic force was determined by calculating the excess chemi-
cal potential for several systems at constant weighting function by means of
the test particle insertion method [145] in the GroMaCS package [87]. The
force was obtained as the derivative of a continuous interpolation of this
excess chemical potential profile. A detailed discussion about the density
inhomogeneities and their elimination can be found in the literature [99].

In conclusion, the application of the thermodynamic force works best for
this system that is why we are confident that it will work for water as well.
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Figure 4.1: Structure of the tetrahedral liquid: Radial distribution functions between
centers of mass for explicit and AdResS simulations of the tetrahedral liquid with several
corrections. The inset shows a close-up of the first peak.

Also from the theoretical background it is clear that the thermodynamic force
works better due to the fact that the interface-pressure correction corrects
the structure in the middle of the hybrid zone, which is not directly related
to the density profile, while the thermodynamic force acts on every molecule
dependent on its position and hence is much closer related to the density
profile.

The tetrahedral liquid has been chosen as a model system for AdResS
and this section has shown that with our implementation in ESPResSo one
can easily reproduce results of previous studies [21, 93, 94] and build the
foundation of future developments in AdResS [95]. After we have seen how
AdResS performed for this simple liquid, we will now apply it to liquid water.

4.2 Water

In this section we will couple one of the coarse-grained water models dis-
cussed in sec. 3.2 to the atomistic resolution using AdResS. The analysis in
this section is the foundation for the study of the influence of the hydrogen
bonding network on the solvation of molecules, which is presented in the
next section. The water model shows several complications compared to the
tetrahedral liquid, which appear already at the stage of coarse-graining:

• Water in the atomistic resolution has partial charges (long-ranged in-
teractions)

• Bonds between Oxygen and Hydrogen in one molecule are rigid
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Figure 4.2: Density profiles of the tetrahedral liquid: AdResS simulation of tetra-
hedral molecule system with a hybrid region width of 12σ with (a) no correction in the
hybrid region, (b) interface-pressure (ip) correction and (c) external thermodynamic force
(tf) correction.
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• Pressure fluctuations are much higher (in the order of 100 bar)

Let us discuss the ideas to overcome these problems first, before we come to
the actual simulation setup and the conclusion we can draw from that.

The problem of charged molecules is delicate due to the fact that on the
one hand electrostatic interactions are long-ranged. On the other hand in
AdResS two molecules far away from each other interact as coarse-grained
molecules, which are uncharged. Therefore, the question is, how to make two
explicit molecules interact in a local, short-ranged, way? Due to the fact that
long-range Coulomb interactions are also computationally very expensive,
this problem was already considered by others [141, 142]. Hence, we can
adopt the idea of the reaction field, which replaces the long-range Coulomb
interaction using a mean-field approximation. In this approximation a charge
experiences all charges beyond a cut-off as a dielectric background resulting in
an effective short-ranged electrostatic interaction. The drawback is that the
coarse-grained model (from sec. 3.2, which was obtained using the particle-
mesh Ewald method) has to be reparameterized for the reaction field method,
which, however, can be done easily using VOTCA (see sec. 2.3.6).

The rigid bonds within the water molecule pose a more technical difficulty,
since first of all, a system with constraints (in this case rigid bonds) has to
be integrated with a different class of integrators [146, 147, 148, 113]. These
account for the constraint forces and make the system obeying the constraints
up to a certain accuracy.

However, as these integrators are implemented in ESPResSo and Gro-
MaCS we will not discuss their technical details here, but rather consider
how we can smoothly switch the rigid interactions on and off. One approach
could be to make the bonds flexible in the first step and removing them in
the second step, when a molecule goes from the explicit to the coarse-grained
region in AdResS and vice versa in the other direction. But from a statistical
point of view this is problematic due to the fact that making a bond flexi-
ble means increasing the number of degrees of freedom. Hence, the hybrid
region would have more degrees of freedom per molecule than the explicit
region, which would make the transition region more complicated in addition
to the fact that the switch from flexible to rigid is not trivial and involves
a metric force [149, 150, 151]. Due to all these considerations and the way
how the bonded interactions are implemented in the simulation package (see
sec. 2.4.6.6), we have chosen the simplest transition, i. e. keeping rigid bonds
in the hybrid region.

We note in passing that the pressure fluctuations at ambient conditions
are about 300 bar, which makes it technically difficult to determine a pressure
corrected model. It also shows how different the pressure in the same system
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can be.

4.2.1 Simulations Setup

The atomistic, explicit model for water used in this study is the SPC/E
model [106] at ambient conditions, whose parameterization can be found in
tab. 3.1. The NVT ensemble was generated by a Langevin thermostat with
ξ = 5ps−1 and a time step of 2 fs. The electrostatic interactions were calcu-
lated using the reaction field approximation. All cut-offs were set to 0.9 nm.
Different sizes of the explicit region were studied using spherical splitting
(see eq. 2.126) of the periodical simulation box of size (4.04538 nm)3 filled
with 2180 water molecules. The spherical atomistic cavity was connected to
the coarse-grained region by a hybrid zone of 1.2 nm.

In the coarse-grained region an atomistic water molecule is replaced by
a sphere, which has its center on the oxygen atom. The reason for not
mapping it to the center of mass was basically that we planned to take
a look at the influence of flexibility on the atomistic model, however, later
it turned out that this influence of the mapping point is nearly negligible,
because the difference in the radial distribution functions of center of mass
and oxygen mapping is less than 2%.

The coarse-grained potential was obtained with an iterative version of the
inverse Monte Carlo method (see sec. 2.3.4.3) using VOTCA (see sec. 2.3.6).
The potential was cross-checked with a potential obtained by iterative Boltz-
mann inversion (see sec. 2.3.4.1). The potentials were essentially the same,
which we already found in the comparison of different coarse-graining meth-
ods (see fig. 3.8).

No correction was applied in the hybrid zone, due to the fact that we
later want to study the influence of the size of the coarse-grained region
on the hydrogen bonding. Nevertheless, a correction can be required in
other cases and is in principle possible. The thermodynamic force ~Fth (see
sec. 2.4.5.4) for a box split in x-direction with a explicit region of 2 nm and
a hybrid region of 3 nm can be found in fig. 4.3. This force was obtained in an
iterative procedure within 5 steps using the iterative framework of VOTCA
(see sec. 2.3.6.2) by S. Fritsch [152].

All simulations were performed using a modified, but freely available ver-
sion of GroMaCS [102]. The algorithms are implemented in the same fashion
as described in sec. 2.4.6.
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Figure 4.3: Thermodynamic force of SPC/E coarse-grained water: The box was
split in x-direction, the explicit region and the hybrid region had a size of 2 nm and 3 nm,
respectively. The force was obtained in an iterative procedure within 5 steps using the
iterative framework of VOTCA (see sec. 2.3.6.2) by S. Fritsch [152].

4.2.2 Dependence on the Size of the explicit Region

We already know that the force interpolation of AdResS can lead to small
density inhomogeneities (see fig. 4.2). Immediately the question arises how
far inside the explicit region the structure is still perturbed by the presence
of the coarse-grained region. For that we calculate the radial distribution
function of a water molecule fixed in the middle of the explicit region with
the other molecules. This radial distribution function is compared for several
AdResS simulations, where the spherical explicit region either contains no,
only the first, or all hydration shells of the atomistic structure. The distri-
bution function is also compared to a common atomistic simulation, which
is equivalent to having only the explicit region of the AdResS simulation.

From the purely atomistic simulation (see fig. 3.1) we know that the
structure begins, g(r) > 0, at dex = 0.2 nm as well as that the first hydration
shell ends at dex = 0.35 nm and that most of the structure is contained in
the sphere of radius dex = 1nm around a water molecule. These values are
confirmed by the distribution function of a purely explicit simulation (see
fig. 4.4), despite the fact that the statistics is in this case of course much
smaller.

In fig. 4.4 the distribution functions for different sizes of the explicit region
are shown. First of all one can see that with bigger explicit regions the
structure tends more towards the atomistic structure, which is not surprising
due to the fact that AdResS is designed to keep the structure of the atomistic
model. Nevertheless because of the force interpolation this structure will
be perturbed near to the hybrid region, but with a bigger explicit region
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Figure 4.4: Radial distribution functions for SPC/E water: The size of the spher-
ical explicit region was changed from 0.2 nm to 1.0 nm, while the hybrid region was kept
at a constant size of dhy = 1.2 nm. Additionally distribution functions from the purely
atomistic and the purely coarse-grained simulation are shown. The perturbation depth
into the explicit region can be determined from this picture and is approximately 0.3 nm.

this perturbation will move more and more away from the center of the
atomistic region. It is also interesting that the perturbation of the pair
distribution functions appears also inside the atomistic region and not only
in the hybrid region. This effect can be understood from the point of view
that molecules near the hybrid zone still interact partly coarse-grained. This
partly coarse-grained interaction follows from eq. 2.112 with w(Xα) = 1
(molecule α is atomistic) and w(Xβ) < 1 (molecule β is hybrid), which then

leads to a contribution of coarse-grained interaction ~F cg
αβ. The perturbation

depth, which can be determined from fig. 4.4, is approximately 0.3 nm (a third
of the interaction cut-off), which additionally depends on the splitting of box.
For the one-dimensional splitting we found a perturbation depth of about
0.1 nm, which is smaller due to the fact that an atomistic molecule near the
boundary to the hybrid region is encased by more atomistic molecules than
in the case of spherical splitting.
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4.2.3 Summary

In the last section we have shown how to apply AdResS to a water system.
This setup can be now be used to study the solvation of bigger molecules in
the next section or to couple the coarse-grained system to the continuum as
done in the literature [143]. However, one has to keep in mind that a lot of
simplifying assumptions were made. For the calculation of the electrostatics
the reaction field approach was used, which is a crude approximation. Fur-
thermore a coarse-grained water molecule is represented by a sphere, which
can not represent the dipolar nature of water. And last, the compressibil-
ities in the both resolutions are not the same. Nevertheless, with all these
points in mind we will use this setup as a foundation to study the solvation
of fullerenes in the next section.

4.3 Solvated Fullerenes

In this section we will extend the study from the previous section by replacing
the water molecule in the center of the explicit region by a bigger molecule
from the 60n2 series of icosahedral fullerenes. A simulation snapshot of the
biggest fullerenes, C2160, is shown in fig. 4.5.

Due to the fact that coarse-grained water is not capable of forming real
hydrogen bonds we can study the influence of these bonds on the structure
forming at the surface of the solute molecule using AdResS, which allows us
to switch the coarse-grained nature on or off in certain regions.

4.3.1 Introduction

Liquid water, has a rather simple chemical structure, but is capable of form-
ing highly complex hydrogen bond networks, which directly affect the way in
which biological molecules move and function [153, 154]. In this context un-
derstanding the solvation of hydrophobic molecules is a key to understanding
crucial processes occurring in biomolecular systems [155, 156].

Some limits have already been studied extensively. In general, the struc-
ture of liquid water around a solute molecule results from a delicate com-
petition between the disruption of the local tetrahedral order of bulk water
and the formation of a two dimensional surface-like order at the solute in-
terface. For very small hydrophobic solutes, such as methane [157], water
molecules can encapsulate the guest molecule, and form so called clathrate
hydrates [158]. An adaptive resolution investigation comparable to this one
has been done in Ref. [159].

Rev. 292(e47a2e8ad7a2) from 2012-02-25
111



CHAPTER 4. ADAPTIVE RESOLUTION SIMULATIONS

Figure 4.5: Snapshot of a fullerene in an AdResS simulation: Adaptive resolution
simulation scheme for hydrophobic solutes illustrated for the case of C2160 icosahedral
fullerene.

For very large solutes, the structure of water close to the solute ap-
proaches the limiting behavior of an interface with an infinite hydrophobic
surface [160]. Empirical theories have been proposed, which suggest that
there is a solute size-dependent critical length scale. On this scale the struc-
ture changes from a local (surface dominated) to non-local (bulk dominated)
effect with a crossover length of about 1 nm. [161, 154] However, quantifying
the concept of local and non-local effects and the related crossover length in
experimental or computational studies remains an open challenge [162, 163].

In order to computationally address the question of the locality of the
hydrophobic effect, a tool is needed that can slowly switch on and off the
hydrogen bonds in a well defined region around the solute, so that their
relevance for the rest of the network can be determined in an unequivocal
way. The switching of the hydrogen bond degrees of freedom must occur
without affecting the thermodynamic equilibrium of the whole system.

For the problem treated here, AdResS can be used to interface an atom-
istic model of water, which explicitly forms hydrogen bonds, with a spherical
coarse-grained (CG) representation of water developed in sec. 3.2 that does
not form hydrogen bonds. This allows to systematically determine the role of
hydrogen bonds of the bulk onto the structure of water around hydrophobic
solutes of different sizes, spanning the proposed 1 nm crossover length. It
will turn out that the locality of hydrophobic hydration does not depend on
the solute size, but rather on the nature of the hydrophobic solute-water in-
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teraction, which exhibits local behavior for Lennard-Jones (LJ) solutes, but
mixed (local/non-local) behavior for purely repulsive solutes.

If adaptive resolution simulations with a minimal explicit region can re-
produce the results of fully explicit all-atom simulations for a hydrophobic
solute, then the effect of the solute on water structure is deemed local. That
means, it is not significantly supported by the bulk hydrogen bond network,
as the bulk is modeled by CG water that is unable to form real directional
hydrogen bonds (see sec. 3.2.3 and Ref [123, 139]).

Hydrophobes are typically non-polar molecules that can not form hydro-
gen bonds with water. The specific character of the interaction of hydropho-
bic molecules with water has been debated in the literature [164, 165, 166,
167]. Electronic structure calculations for benzene in water [168] suggest the
use of a Lennard-Jones type potential of the C-O non-bonded interaction.
Alternatively, the C-O interaction is sometimes treated as a purely repul-
sive interaction, and modeled with either a Weeks-Chandler-Andersen poten-

tial [169] or with a modified LJ potential with the
(

σ
r

)6
term removed [170].

It is beyond the scope of this study to assess the physical relevance of one
C-O potential function over the others. However, the results we present here
suggest that the choice for the C-O interaction has determining consequences
on the locality of the disturbance on the hydrogen bond network produced
by the solute.

4.3.2 Simulation Setup

To test the locality of the hydrophobic hydration, AdResS simulations of the
60n2 series of icosahedral fullerenes were performed with varying thickness
dex for the layer with atomistic molecular representation. The fullerenes have
effective radii of 0.35− 2.1 nm, going from C60 to C2160.

All the results presented were obtained by running NVT simulations using
the same modified version of GroMaCS [102] as above, whose implementation
details can be found in sec. 2.4.6.

The simulation setup was quite similar to the one of the previous section.
A Langevin thermostat with a friction constant of ξ = 5ps−1 and a time
step of 2.0 fs was used. The volume of the system was obtained from all-
atom NPT simulations with Pref = 1atm using the reaction-field method for
the electrostatics, and Berendsen Barostat for pressure coupling.

In this case the reaction-field method was a rather poor approximation
due to the fact that there was no water inside the fullerenes and hence the
mean field assumption of the the method did not hold anymore. However no
better approximation was found so far.
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Atom σ (nm) ǫ (kJ/mol) q (e) m (u)
C 0.355 0.293 0.0 12.011
O 0.316557 0.650194 -0.8476 15.9994
H 0.0 0.0 0.4238 1.008
Interaction σ (nm) ǫ (kJ/mol) (Lorentz-Berthelot)
C-O 0.335779 0.436471
C-H 0.0 0.0
O-H 0.0 0.0

Table 4.1: Forcefield parameters for fullerenes and SPC/E water: These force field
parameter for the fullerenes [170] and SPC/E water model were used. Other interaction
parameters were obtained using the Lorentz-Berthelot mixing rules.

Periodic boundary conditions and minimum image convention were ap-
plied in all directions, and a cut-off of 0.9 nm was used for the non-bonded
interactions. After warm-up and equilibration of 1 ns, several trajectories
of 2 ns were collected for each interaction and AdResS setup. The coarse-
grained potential was obtained using inverse Monte Carlo simulations with
the VOTCA package (see sec. 2.3.6) after this iterative procedure a pressure
correction (see sec. 2.3.4.2) was applied. The coarse-grained water potential
interaction is again centered in the oxygen atom, which leads to a smoother
transition between the different resolutions and ensures an unique mapping
point even in the case of flexible water models.

The parameters for the SPC/E water model can be found in tab. 3.1.
A previously described OPLS model for buck-minster fullerene (C60) was
adapted for the 60n2 fullerenes [170], the exact force field parameters in
combination with SPC/E water can be found in tab. 4.1. It is important
to note that the typical energy of a hydrogen bond (on average 23.5 kJ/mol
for SPC/E), is roughly 50 times larger than the optimal C-O Lennard-Jones
interaction. [171] The functional form of the non-bonded potentials was:

U =

{

4ǫ
[

(

σ
r

)12 −
(

σ
r

)6
]

: Lennard-Jones

4ǫ
(

σ
r

)12
: Purely Repulsive

(4.3)

A snapshot of the computational setup is illustrated in fig. 4.5. As the
fullerenes do not possess spherical symmetry, the distribution of the distances
of the C atoms from the solute center of mass is spread over an interval ∆r,
with ∆r ranging from less than 0.05 nm for C60 to about 0.5 nm for C2160.
Hence, the sizes of the explicit region were chosen according to the sizes of the
hydration shells, which are the positions of these minima in the distribution
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function, determined in a purely atomistic simulation and can be found in
tab. 4.2. The width of the hybrid region dhy was 1.2 nm in order to smoothly
couple the layer of explicit water around the solute to the bulk CG water
region. Small inhomogeneities in the density profile are observed, but no
correction was applied due to the fact that they do not appear to affect the
results discussed here. As the explicit region is still a sphere there is an edge
thinning effect around the solute, which is not considered here.

The sizes of the hydration shells lead to a nearly constant relative thick-
ness drelex of the explicit zone, when measuring from the surface of the solute
(see last line of tab. 4.2). But as the absolute size of the hydration shells
of the Lennard-Jones and purely repulsive solutes differ, the corresponding
sizes of the explicit regions used in the two models have slightly different
sizes.

When speaking of a surface and a distance to the surface of a solute we
mean the closest carbon of the solute. Obviously this is not a unique defini-
tion of the surface, one could think about the distance from the plane through
the three closest carbons, but this will lead to other definition problems at
the edges of the solute. However, to understand our results even this very
rough estimate of the surface is sufficient.

With this surface definition one identifies the distribution function S(rrel),
which is defined as the average number of water molecules observed at a dis-
tance rrel from the solute surface. Because of the non-spherical shape of the
fullerenes (see fig. 4.5), the function S(rrel) is reported in addition to the tra-
ditional radial distribution function g(r). Approximations for g(r) based on
a fit to the volume of each fullerene as a function of their effective radii could
be used as well [167], but would unnecessarily complicate the understanding
of the results.

To ensure that the results are not influenced by the choice of the water
model, simulations were tested for rigid and flexible versions of the TIP3P
and SPC/E point charge models (see tab. 3.1). Although only the results for
rigid SPC/E are shown here, the general conclusions drawn hold the same
for each three-site model, as the detailed simulation results were qualitatively
the same for each of the models, even for flexible TIP3P, which can include
Lennard-Jones interactions with the hydrogen atoms. Introducing explicit
interactions for the hydrogens does not affect the results, because the ge-
ometry of the molecules prevents the hydrogen atoms from penetrating the
fullerene even in the absence of explicit hydrogen interactions.
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Solute Hydration shell width (nm)
Lennard-Jones Purely Repulsive
1st 2nd 1st 2nd

C60 0.85 1.05 0.95 1.25
C240 1.20 1.40 1.30 1.60
C540 1.53 1.73 1.63 1.93
C960 1.90 2.10 2.00 2.30
C1500 2.25 2.45 2.35 2.65
C2160 2.55 2.75 2.65 2.95
drelex 0.5 0.7 0.6 0.9

Table 4.2: Hydration shell sizes of fullerenes: The sizes of the first and second
hydration shells measured from the center of mass of the solute. The radii of the shells
were then used as the size of the explicit region dex, the relative size drelex of the explicit
region measured from surface of the solute is given in the last line. As these radii are
different for the Lennard-Jones and purely repulsive solutes, the corresponding size of the
explicit region used in the two models is different.
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Figure 4.6: Water distribution near the surface of a fullerene: The distribution
S(rrel) of the number of SPC/E water molecules is plotted as a function of the distance
from the surface of the solute, rrel. Results for the LJ solutes are shown on the left and for
the purely repulsive solutes on the right. Different sets of curves correspond to different
solutes from C60 to C2160 as the cartoon in the middle shows. Vertical lines indicate the
average size of the explicit region in each AdResS simulation. Colored curves correspond
to different sizes of the explicit region: Up to the first hydration shell (green) or to the
second hydration shell (blue). The red line represents the reference all-atom simulation.
The different curves are shown up to distances corresponding to the size of the explicit
region used.
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Figure 4.7: Radial distribution function of water near the fullerene surface: The
radial distribution function g(r) of SPC/E water molecules around the solutes obtained
from the fully explicit simulations is plotted as a function of the distance from the center
of mass rCOM of the solute. Results for the LJ solutes are shown on the left and for the
purely repulsive solutes of the right. On top cartoons from C60 to C2160 are displayed to
identify the curves. It is important to note that the purely repulsive solutes have nearly
no first peak.

4.3.3 Results

The relative ability of each adaptive resolution simulation to reproduce the
local density and structure of water around the solute is shown in fig. 4.6
and fig. 4.8. A comparison of the right and left panels of fig. 4.6 shows that
limiting the size of the explicit region to the first hydration shell is sufficient
to reproduce the density of water around the LJ solute (left panel). The
situation is very different for the purely repulsive solutes, where the radial
distribution of the water is greatly disturbed by the coarse-graining of the
bulk (right panel). For much larger explicit regions (i. e. dex = 2.25 nm
for C60, not shown) we notice a consistent radial distribution. However,
explicit region sizes comparable to the first and the second hydration shells
are insufficient to reproduce accurately the results obtained in fully explicit
simulations. Thus for purely repulsive hydrophobes, changes in the bulk
directly affect the local hydration structure.

This difference between LJ and purely repulsive solutes is also evident
from the distribution of the tetrahedral order parameter q4(r) around the
solutes shown in fig. 4.8. In contrast to sec. 3.2.1 this time we defined q4(r)
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as in [126]:

q4 = 1− 3

8

∑

i<j

[

cos(θij)−
1

3

]2

, (4.4)

where θij is the bond angle between particle i, the reference particle, and
particle j, where i and j sum over the first four nearest neighbors of the
reference particle. In this study we used this definition due the fact that
we are more interested in the full range of θij and not in the narrow range
around the perfect tetrahedral packing like in sec. 3.2.1.

However, in fig. 4.8 we see that the repulsive solutes (right panel) exhibit
almost negligible tetrahedral order at the solute interface. In particular, the
water orientation very close to the repulsive solute surface appears to be in-
creasingly more random for increasing solute size that means q4 tends towards
0 (no tetrahedral packing) for the larger repulsive solutes. On the contrary,
the LJ solutes (left panel) present a smaller decrease, even though signifi-
cant. q4 decreases from the bulk value of about 0.6 to 0.3-0.4 closer to the
solute surface. However, the decrease is nearly independent of the thickness
of the all-atom regime. These results suggest that LJ solutes induce a locally
ordered yet very flexible hydrogen bond network, completely consistent with
recent vibrational sum frequency spectroscopy results for water [162].

In addition, the height of the first peak of the radial distribution function
g(r) for the LJ solutes shown in the left panel of fig. 4.7, does not appear
to decrease for increasing solute size, consistent with a previous study of
spherical solutes [172].

For the repulsive solutes on the contrary, a complete non-wetting is ob-
served, as the g(r) function for the two largest repulsive solutes has essentially
no first peak, shown in the right panel of fig. 4.7. The peak of the first hy-
dration shell in the radial distribution function can be used to identify the
formation of an interface layer similar to that of a gas-liquid interface. The
phenomenon associated with the depletion of this interface layer is usually
referred to as non-wetting [154, 165]. As the surfaces of the largest solutes
approach the limit of a graphene sheet [173] the comparison to previous
studies of attractive and repulsive hydrophobic sheets [174] is reasonable,
where a consistent difference in non-wetting behavior observed with the two
potentials was found.

This interpretation explains why the AdResS simulations are capable of
reproducing local structures for the LJ solutes, but are not capable to do so
for the repulsive solutes. The latter do not support a specific water structure
in any significant way and the influence of the bulk water propagates to-
wards the interface. As a consequence, adaptive resolution simulations that
approximate the bulk with a CG model can not match the local density and
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Figure 4.8: Tetrahedral packing of water near the fullerene surface: The average
tetrahedral order parameter q(r) of SPC/E water as a function of the distance r (in nm)
from the surface of the solute is plotted for the LJ on the left and for purely repulsive
solutes on the right. Vertical lines and colors are the same as in fig. 4.6. Results are
reported for the solutes (see also the corresponding cartoon) from C60 (bottom plots) to
C2160 (top plots).
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structure of water around the repulsive solutes.

4.4 Summary

The locality of hydrophobic hydration is primarily controlled by the nature
of the interaction between the hydrophobe and water. For purely repulsive
hydrophobes, the hydration structure extends its effect to the bulk. On the
same footing, perturbations in the bulk, such as the CG approximation, affect
the structure and density of water at the solute interface. The size of the
solute does not appear to affect the locality of the solvation significantly.
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Chapter 5

Conclusion & Outlook

In this thesis we have discussed water models on two different resolutions:
On the atomistic level and on the coarse-grained level. These two scales
have been coupled using the adaptive resolution scheme, and the coupling
was then used to describe the solvation of a series of icosahedral fullerenes.
We will first summarize the results of applying different coarse-graining tech-
niques to atomistic water models and other molecules. Then, the outcomes
of the AdResS study using these coarse-grained force fields will be discussed.
Finally we will conclude with an outlook on future research plans.

5.1 Coarse-Graining

The coarse-grained water models developed in this thesis treat water as a
sphere. The atomistic and the coarse-grained resolutions are related by map-
ping the atomistic coordinates to the coarse-grained ones. Two different
mapping schemes were applied: Either the center of mass or the oxygen of
a single molecule was mapped onto the coarse-grained coordinates.

From the detailed study of structure-based coarse-graining of three dif-
ferent rigid water molecules [3], one can conclude that the coarse-grained
interaction is governed by two length ratios, which are necessary to allow
for tetrahedral packing. This special feature of water can be characterized
by the tetrahedral order parameter, which measures the extend to which the
4 neighboring molecules of a water molecule form a tetrahedron. The two
length ratios can be seen in the shape of the coarse-grained potential, which
exhibits two minima with the one at larger distances being deeper.

For all coarse-grained models, the compressibility fits its corresponding
atomistic counterpart with at most 10% deviation. However, the pressure in
the coarse-grained model is approximately by a factor of 8000 higher than in
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the atomistic case with the same density. When the pressure is constrained
to match the atomistic pressure, by adding a pressure correction term, the
compressibility increases by a factor 5. This leads to the conclusion that,
at least for these simple coarse-grained water models, compressibility and
pressure can not be fitted simultaneously.

Furthermore, for the coarse-grained models, be they pressure-corrected
or not, the tetrahedral packing decreases significantly with the mean value
of the tetrahedral order parameter, dropping by 30%. Nevertheless, we have
developed a coarse-grained model with a packing behavior comparable to
the atomistic models. This model exhibits an over-structured radial distri-
bution function, and hence does not match the one of the atomistic model
anymore, which should actually be the main outcome of a structure-based
coarse-graining approach. We relate this weaker packing to the fact that
coarse-grained models interact isotropically and therefore can not form a hy-
drogen bond network. This is supported by the observation that the average
life time of the tetrahedral cluster decreases. Recently, it was shown that
the tetrahedral packing and the radial distribution function can be matched
simultaneously using a coarse-grained water model with a 3-body interac-
tion [175].

In this study, the coarse-graining was done by iterative Boltzmann inver-
sion, although the results do not depend on the method employed. To prove
this, we compared different coarse-graining methods, namely iterative Boltz-
mann inversion, iterative inverse Monte Carlo and force matching [5]. While
iterative Boltzmann inversion and iterative inverse Monte Carlo basically led
to the same results for water, force matching generated a potential similar in
shape, but different in the pair distribution function. This deviation can be
understood from the point of view that on the one hand force matching is
neither a structure-based nor an iterative method, while on the other hand,
the basis set of the coarse-grained force field, an isotropic interaction, is too
limited to fit the many-body potential of mean force. With an increased ba-
sis set, namely a 3-body interaction, a consistent pair distribution function
can be obtained using an extension of the force matching technique called
multi-scale coarse-graining [175].

To judge the suitability of the different coarse-graining methods from an
objective point of view, the open-source package VOTCA [5] was developed
and published on the web [84]. Aside from water the package was used to
study liquid methanol, liquid propane, and a single chain of hexane.

For methanol, force matching and iterative Boltzmann inversion worked
beautifully, whereas iterative inverse Monte Carlo caused problems when
calculating the correct correlation for small systems due to the finite size of
the simulation box. After solving this issue by studying bigger systems, all

122
Rev. 292(e47a2e8ad7a2) from 2012-02-25



5.2. ADAPTIVE RESOLUTION SCHEME

three methods agreed in terms of structure and shape of the coarse-grained
potential.

Liquid propane was taken as an example for a multi-component sys-
tem. The coarse-grained mapping incorporates two kinds of beads. Iterative
Boltzmann inversion and force matching resulted in similar bonded and non-
bonded interaction potentials, while iterative inverse Monte Carlo exhibited
stability problems and thus no potentials could be determined.

For the example of a single chain of hexane, the influence of coupled
degrees of freedom and the choice of an incomplete basis set for a coarse-
grained force field were examined and arising problems in the force matching
algorithm were discussed.

In summary, the VOTCA package enables an automated and system-
atic comparison of various coarse-graining techniques and the coarse-graining
community is already benefiting from this package.

Nevertheless, pair distributions are only one aspect of coarse-graining. In
general, the dynamics of a coarse-grained system is much faster than that of
the atomistic reference system, which is due to the coarse-grained systems
having a much smoother energy landscape.

The faster diffusion has the advantage of an intrinsically faster system,
which samples a bigger part of the phase space. The disadvantage is, of
course, that the dynamics of the coarse-grained system does not necessarily
resemble the one of the all-atom system. In a multicomponent system every
component will have a different speedup, which makes it hard to study pro-
cesses involving multiple components and to determine the speedup of the
total system.

To slow down the diffusive dynamics, we proposed an extension of the
DPD thermostat [1]. This so-called transversal DPD thermostat acts on the
degrees of freedom perpendicular to the interatomic axis of two particles.
It has been shown that with this approach, we can influence the diffusive
part of the dynamics in a way that is compatible with hydrodynamics due to
the fact that our thermostat inherits momentum conservation from the DPD
thermostat.

5.2 Adaptive Resolution Scheme

With the knowledge about the development of coarse-grained models we
then focused on AdResS [4], which is a simulation method that couples two
resolutions of the same physical system. The coupling is done via force in-
terpolation, which ensures the validity of Newton’s third law and hence the
free exchange of particles between the two regions. The basic ansatz of the
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method is easy to understand, but exhibits some issues in its implementa-
tion. For this reason we fully explain the implementation of AdResS into
the ESPResSo [6] and GroMaCS packages [102]. Due to the fact that this is
the first freely available implementation we call it a reference implementation
and validate it with former results namely the tetrahedral liquid.

With the confidence of having a working and efficient implementation we
investigated an atomistic water system coupled to a coarse-grained system
using one on the models mentioned above. The coupling introduces a small
perturbation in the atomistic region, which is determined to be a third of
the interaction length in the case of a spherical atomistic region. Despite
this small perturbation, the radial distribution function is conserved and
molecules are freely exchanged between the regions.

As the coarse-grained water is not able to form hydrogen bonds, we were
able to study the influence of the absence of the hydrogen bond network on
the hydration of small molecules, in this case a series of icosahedral fullerenes.
In AdResS one can increase the size of the atomistic region and allow a bigger
hydrogen bond network to form. We found that the locality of hydrophobic
hydration is primarily controlled by the nature of the interaction between
the molecule and water. For purely repulsive interactions between solute and
water the hydration structure is influenced by the bulk, while for Lennard-
Jones interaction an influence was not measurable.

5.3 Outlook

In the coarse-grained approaches discussed in this thesis the Coulomb in-
teraction was always reduced to an effective interaction, which was short
ranged. However, this only reproduces the correct properties if the coarse-
grained beads can be chosen to be uncharged. A fitting procedure for effec-
tive coarse-grained charges is possible, but technically very demanding. In
AdResS the problem is comparable, the interaction between two molecules
has to be short ranged, otherwise the force interpolation is not possible. That
means AdResS has to be extended for systems with charged coarse-grained
beads.

VOTCA has provided significant insight in the process of systematic
coarse-graining, but the development process of the package is not yet com-
plete. First, an implementation of the simplex algorithm, which allows the
parameterization of the coarse-grained model for thermodynamic properties,
for example pressure or free energies, is in preparation. Second, an iterative
method, which combines the iterative inverse Monte Carlo update at the
beginning of the coarse-graining procedure with the iterative Boltzmann in-
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verse update in later stage, could be beneficial for the development of coarse-
grained models. Third, coarse-graining of long range interactions should be
implemented. Fourth, back-mapping to atomistic details is another planned
feature of the VOTCA package. Since a coarse-grained model only repro-
duces certain properties of the higher resolution model, atomistic details can
be reintroduced after equilibration at a coarse-grained level to measure the
atomistic properties [26]. With this approach only a short equilibration run
at atomistic level is required to locally equilibrate the system.

Due to the development of automated coarse-graining an increasing num-
ber of coarse-grained force fields will be developed. To avoid the constant
reinventing of force fields these should be stored and categorized in an elec-
tronic library. Due to growing availability of coarse-grained force fields it
will be also much more convenient to use AdResS to access much bigger time
and length scales. With our implementations of the scheme we have started
the transition from the method development stage to the application stage,
which will allow the method to be used by the biochemical community.
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[26] W. Tschöp, K. Kremer, O. Hahn, J. Batoulis, and T. Bürger. Simula-
tion of polymer melts. II. From coarse-grained models back to atomistic
description. Acta Polymerica, 49(2-3):75–79, 1998.

[27] J. C. Shelley, M. Y. Shelley, R. C. Reeder, S. Bandyopadhyay, and
M. L. Klein. A coarse grain model for phospholipid simulations. The

Journal of Physical Chemistry B, 105(19):4464–4470, 2001.

[28] C. F. Abrams and K. Kremer. Combined Coarse-Grained and atomistic
simulation of liquid bisphenol a – polycarbonate: Liquid packing and
intramolecular structure. Macromolecules, 36(1):260–267, 2003.

Rev. 292(e47a2e8ad7a2) from 2012-02-25
129



BIBLIOGRAPHY

[29] T. Murtola, E. Falck, M. Patra, M. Karttunen, and I. Vattulainen.
Coarse-grained model for phospholipid/cholesterol bilayer. The Journal
of Chemical Physics, 121(18):9156, 2004.

[30] S. Izvekov and G. A. Voth. Multiscale coarse graining of liquid-state
systems. The Journal of Chemical Physics, 123(13):134105, 2005.

[31] Q. Sun and R. Faller. Systematic Coarse-Graining of a polymer blend:
polyisoprene and polystyrene. Journal of Chemical Theory and Com-

putation, 2(3):607–615, 2006.

[32] V. A. Harmandaris, N. P. Adhikari, N. F. A. van der Vegt, and K. Kre-
mer. Hierarchical modeling of polystyrene: From atomistic to Coarse-
Grained simulations. Macromolecules, 39(19):6708–6719, 2006.

[33] L. Yelash, M. Müller, W. Paul, and K. Binder. How well can Coarse-
Grained models of real polymers describe their structure? the case
of polybutadiene. Journal of Chemical Theory and Computation,
2(3):588–597, 2006.

[34] A. Y. Shih, A. Arkhipov, P. L. Freddolino, and K. Schulten. Coarse
grained Protein-Lipid model with application to lipoprotein particles.
The Journal of Physical Chemistry B, 110(8):3674–3684, 2006.

[35] A. Lyubartsev. Multiscale modeling of lipids and lipid bilayers. Euro-
pean Biophysics Journal, 35(1):53–61, 2005.

[36] J. Zhou, I. F. Thorpe, S. Izvekov, and G. A. Voth. Coarse-Grained
peptide modeling using a systematic multiscale approach. Biophysical
Journal, 92(12):4289–4303, 2007.

[37] A. Villa, N. F. A. van der Vegt, and C. Peter. Self-assembling dipep-
tides: including solvent degrees of freedom in a coarse-grained model.
Physical Chemistry Chemical Physics, 11(12):2068–2076, 2009.

[38] Google Books. “computer simulation”. http://books.google.de/books
?q=%22computer+simulation%22, 2010.

[39] Google Books. “molecular dynamics”. http://books.google.de/books
?q=%22molecular+dynamics%22, 2010.

[40] H. Goldstein, C. P. Poole, and J. L. Safko. Classical Mechanics. Pear-
son, 3rd edition, 2001.

130
Rev. 292(e47a2e8ad7a2) from 2012-02-25



BIBLIOGRAPHY

[41] H. Risken. The Fokker-Planck Equation. Methods of Solution and Ap-

plications. Springer-Verlag Berlin and Heidelberg GmbH & Co. K,
1989. 2nd printing edition, 1989.

[42] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola,
and J. R. Haak. Molecular dynamics with coupling to an external bath.
The Journal of Chemical Physics, 81(8):3684–3690, 1984.

[43] G. Bussi, D. Donadio, and M. Parrinello. Canonical sampling through
velocity rescaling. The Journal of Chemical Physics, 126(1):014101–7,
2007.

[44] B. Dünweg. Langevin methods. In B. Dünweg, A. I. Milchev, and
D. P. Landau, editors, Computer Simulations of Surfaces and Inter-

faces: Proceedings of the NATO Advanced Study Institute, Albena, Bul-

garia, from 9 to 20 September 2002, pages 77–92. Springer Netherlands,
2004.

[45] B. Dünweg and W. Paul. Brownian dynamics simulations without
gaussian random numbers. International Journal of Modern Physics

C, 2(3):817–827, 1991.

[46] T. Soddemann, B. Dünweg, and K. Kremer. Dissipative particle dy-
namics: A useful thermostat for equilibrium and nonequilibrium molec-
ular dynamics simulations. Physical Review E, 68(4), 2003.
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