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Abstract

This theoretical report is about the method of multicanonical simulations, which
became very common in the last ten years. I tested it for two different models,
the Ising-Model and the AB-Model from Stilinger-Headgordon. For the Ising
Model it works excellent, while for the AB-Model some difficulties, like getting
trapped and problems with binning, appear which can be solved. The results
look similar to previous done researches. So with a less more on input the
multicanonical method provies much better results than a canonical simulation.
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2 THEORY

1 Introduction

The physics of interesting properties are mostly described by states whose prob-
ability is low, e.g. the ground state, whose realizations are very rare, that is
why the system will never pass through this state during simulation. These
interesting states also represent transition states, e.g. the states with highest
surface tension in the transition between droplett and strip in the Ising-Model.
To overcome these barriers of improbability the sampled distribution of the
simulation has to change from the Boltzmann distribution to a new one the
multicanonical distribution. Another point is that a normal (canonical) simu-
lation is perfomed at a fixed temperature and has a finite length, that is why
the number of measured energies is also finite, so the energy distribution is only
satisfactorily known in a certain interval. Below that interval the distribution is
cut off because of the monotonic behavior of Ω(E) and above this interval the
factor e−βE leads to a cut-off. To sample the whole energy space to get more
information about the properties of the systems and calculate more accurate
meanvalues. Maybe one can perform more canonical simulations at different
temperatures or use reweighting techniques, but this is very time-consuming so
I want to discuss the method of multicanonical simulations in this report.

2 Theory

2.1 Statistical Physics

It is known that the distribution of the states of a system in equilibration with
a reservoir at temperature T is given by

pµ(β) ∝ e−βEµ (1)

where β = 1/kBT is called the inverse temperature. This distribution is known
as the Boltzmann Distribution. It seems useful to rewrite it to a distribution of
the energies

P (E, β) ∝ Ω(E)e−βE (2)

where Ω(E) is the density of states which counts the number of states at a certain
energy. The exact form of the density depends on the researched system and is
unknown. For all normal systems one can assume that the density is continuous
excepting some energy the system could not reach for structural reasons and
the smallest energies, the ground states, always have much less realizations.

The execption value is the value of a quantity Q which measured in infinte
long time of measurement. It is given by

〈Q〉(β) =

∑

µ Qµpµ(β)
∑

ν pν(β)
, (3)

where the sum goes over all possible states. With the help of equation 2 this
can be rewritten

〈Q〉(β) =

∑

E Q(E)P (E, β)
∑

E P (E, β)
, (4)

but this is only possible if the quantity Q can be expressed completly in terms
of the energy. The sum in equation 3 and 4 goes over the whole configuration
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2.2 Monte Carlo Simulations 2 THEORY

space which is very large and so the sum is not possible to process analytically
for all systems.

2.2 Monte Carlo Simulations

Monte Carlo Simulations got very popular in the past fifty years. They are used
to estimate statistical properties of large systems by replacing the whole config-
uration space by well chosen random subsets, which only contain the important
states. This is called importance sampling.

2.2.1 Markov Process

A Markov process is used to produce such a random important subset of im-
portant states. It produce one configuration out of an other.

µ
P (µ→ν)−→ ν

P (ν→λ)−→ λ (5)

The P (µ → ν) are called transition probabilities, which have to fulfill three
conditions:

1. Normalization:
∑

ν P (µ → ν) = 1
This is necessary to ensure that the transition properties are normalized
and that at least one transition is possible.

2. Ergodicity:
It must be possible that every state can be reached from every state in a
finite number of steps.

3. Detailed Balance: sµP (µ → ν) = sνP (ν → µ)
If this condition is satisfied, the occupation probability of a state µ in the
chain is given by sµ.

2.2.2 Metropolis Update

This update [1] is a special choice of the transition probabilities:

P (µ → ν) = min

(

1,
sν

sµ

)

(6)

2.3 Multicanonical Simulations

The basic idea [2] of the multicanonical simulations is to sample in an other
distribution:

Pmu(E) = Ω(E)Wmu(E) ≈ const. (7)

This is the multicanonical distribution which is different from the Boltzmann
distribution and independent from the temperature. The new defined multi-
canonical weights Wmu(E) are unknown as the density of states is also unknown.
So the simulation can be divided in:

1. Determining the weight

2. Final simulation with fixed weights and high statistics

3. Reweighting back to the canonical ensemble and calculation of the mean-
values
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2 THEORY 2.3 Multicanonical Simulations

2.3.1 Determining the weights

For this task I used the Multicanonical Recursion. One can also use the Wang-
Landau algorithm or maybe a generic method. The derivations of the multi-
canonical recursion is adapted from the book of Bernd Berg [3]. The basic idea
follows the assumption that the weights can be determined exactly from the
density of states, which is of course unknown.

Wmu(E) ∝ 1/Ω(E) = elnΩ(E) = e−S(E) (8)

By using the dimensionless, microcanonical free energy

f(E) =
F (E)

T (E)
=

U(E) − TS(E)

T (E)
= β(E)E − S(E). (9)

in equation 8 the weights can be rewritten as

Wmu(E) ∝ e−β(E)E+f(E). (10)

But f(E) is not independent of β(E). The first fundamental law of thermody-
namics

dU = TdS − pdV (11)

gives the definition of the microcanonical temperature

β(E) =
1

T (E)
=

∂S

∂E
=

S(E + ε) − S(E)

ε
, (12)

where ε is the smallest energy difference. This is a simplification, but as I want to
implement the method in a computer I need to discretize. So the connection of
the temperature β(E) and the free energy f(E) is given by combining equations
9 and 12

f(E) − f(E − ε) = (β(E) − β(E − ε))E. (13)

The scale of the free energy is free to choose, that is why I choose f(Emax) = 0.
Now I set the initial value to β0(E) = 0 and f0(E) = 0, meaning that at the
beginning all energies have the same weight. After the initial (0th) run the value
will be replaced by β1(E) and f1(E). So the nth run uses βn(E) and fn(E) to
gain the nth histogram Hn(E), out of which I calculate βn+1(E) and with the
help of equation 13 fn+1(E) follows for free.

An estimate βn+1(E) called β̃n(E) follows from the histogram Hn(E). The
idea is that an estimate of the density of states is given by the histogram so
equation 8 leads to

H(E) ≈ Ω(E) ∝ 1/Wmu(E). (14)

Therefore the estimate of the associated multicanonical weight W̃mu
n is simply

given by

W̃mu
n ∝ e−S̃n(E) ∝ Wmu

n

Hn(E)
, (15)

which under the use of equation 12 also means

β̃n(E) = βn(E) + (ln Hn(E + ε) − ln Hn(E)) /ε. (16)
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2.3 Multicanonical Simulations 2 THEORY

There is a problem with empty histogram entries, which is of course solved later.
Now the βn+1(E) is a error weighted mixture of the β̃n(E) and βn(E)

βn+1(E) = κ(E)β̃n(E) + (1 − κ(E))βn(E), (17)

where κ is inversely proportional to the variance of β̃n(E). Equation 16 gives

σ2(β̃n(E)) = σ2(βn(E)) + σ2(lnHn(E + ε))/ε + σ2(lnHn(E))/ε. (18)

As βn(E) is fixed in every single simulation its variance vanishes. For the
histogram it holds that

σ2(ln Hn(E + ε)) = (ln(Hn + ∆Hn) − ln(Hn))2 , (19)

where ∆Hn is the fluctuation in the nth histogram which is known to grow
with square root of the number of entries, what is in fact a assumption for
uncorrelated histogram entries. As ∆Hn ∝

√
Hn is smaller in comparison to

the number of entries an expansion of the ln(Hn + ∆Hn) gives

ln(Hn + ∆Hn) − ln(Hn) ≈ ln Hn +
∆Hn

Hn

− ln Hn =
∆Hn

Hn

∝ 1√
Hn

. (20)

Equation 18, 20 and of course uncorrelated histogram entries leads to

σ2(β̃n(E)) ∝ 1

Hn(E + ε)
+

1

Hn(E)
. (21)

This means that if the statistic weight of β̃n(E) grows inversely proportional to
its variance it also grows with the number of entries. This is understandable
as double amount of entries should have double weight. 1/σ2(β̃n(E)) can be
written as

1/σ2(β̃n(E)) ∝ p(E) =
Hn(E + ε)Hn(E)

Hn(E + ε) + Hn(E)
. (22)

This also solves the problem with empty entries in the histogram, because
p(E) = 0 for Hn(E) = 0 or Hn(E + ε) = 0. All simulations should be taken in
account in the same way. So κ(E) in equation 17 is just p(E) normalized on all
previous simulations.

κ(E) =
p(E)

p(E) + pn(E)
, (23)

where pn(E) is just sum of all p(E) from previous runs. With the help of
equation 16 the recursion in equation 17 simplifies to

βn+1(E) = βn(E) + κ(E) (ln Hn(E + ε) − ln Hn(E)) /ε. (24)

This equation can be transformed to an equation of the ratios of the weights
which are defined by

R(E) =
Wmu(E)

Wmu(E + ε)
=

e−β(E)E+f(E)

e−β(E+ε)(E+ε)+f(E+ε)
= eεβ(E), (25)

where the last step is performed with the help of equation 13. Now the recursion
in equation 24 looks much simpler:

Rn+1(E) = Rn(E)

(

Hn(E + ε)

Hn(E)

)κ(E)

(26)
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2 THEORY 2.4 Energy-Landscape-Paving(ELP)

This recursion has no problems with empty histogram entries, because κ(E)
vanishes for those energies.

I want to summarize this section. The determination of the weights works
like this:

1. Wmu
0 = 1 and p0(E) = 0 for all E, n = 0

2. Perform a simulation with a certain number of updates using a Metropolis
update with sµ = Wmu

n (Eµ)

3. Update the weights as shown in equation 24 or 26, pn+1(E) = pn(E)+p(E)

4. n = n + 1

5. Go to 2 or make final simulation

2.3.2 Final Simulation

The final simulation is longer than the simulations in the recursion in order
to have more statistics which means smaller errors. It uses, like the recursion
simulations, a Metropolis update with sµ = Wmu(Eµ). For that reason the
produced Markov chain is multicanonical distributed.

2.3.3 Reweighting back

As I was interested in the meanvalues in the canonical ensemble I have to
reweight back. A estimator for a physical quantity Q is given by

Q(β) =

∑

i Q(Ei)(W
mu(Ei))

−1e−βEi

∑

j(W
mu(Ej))−1e−βEj

, (27)

where the summation goes over all measurements of the final simulation. In the
case of discretized energies, as in the Ising model, or small bin sizes, as in the
AB-Model, one can also do a reweighting out of the histogram H(E)

Q(β) =

∑

E Q(E)H(E)(Wmu(E))−1e−βE

∑

E H(E)(Wmu(E))−1e−βE
. (28)

By using this equation one can also get a estimate for the density of states
except for a scale factor C:

Ω(E) = C · H(E)/Wmu(E) (29)

As far as I know there are no possibilities to estimate errors after calculating
the density as shown above.

2.4 Energy-Landscape-Paving(ELP)

This relatively new method was invented by Ulrich Hansmann and Luc Wille
[4]. It is designed to find global energy minima. The idea is pretty simple, one
just replaces the energy E by some effective energy Eeff

E → Eeff = E + H(E) (30)
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2.5 Models 2 THEORY

where H(E) is the histogram at energy E at this step of the simulation. The
rest of the simulation is just an ordinary canonical simulation at low tempera-
ture, T ≈ 0.1. What happens now is that the local minima are filled up with
histogram entries, that means that after the system has been in such a minima
for a certain number of steps it is supposed to leave it again, because the ef-
fective energy increases with every steps. After certain, maybe long, time the
system has found the global minima. Because of the time depending form of the
energy all statistic properties of the simulation vanish and only a global minima
can be found.

2.5 Models

2.5.1 Ising-Model

The Ising-Model is a very popular model for testing algorithms. It describes a
simple ferromagnet with spins si, pointing up or down, sitting on every lattice
site. The energy is given by

E = −J
∑

〈i,j〉

si · sj , (31)

where J is the coupling constant and the sum goes over the nearest neighbors.
I take J = 1 and choose a 2D square lattice with length 16, so that there are
16 × 16 = 256 spins on the lattice. The energy can take values from −512
to 512, the smallest energy difference is four, which comes from the number
of neighbors. As simple as this model is, there are still some exceptions, the
energies 508 and −508 are not possible to visit due to energy change by flipping
one spins in the maximum or minimum configuration.

The update is very simple, it is just a flip of a randomly chosen spin. The
energy changes from Eµ to Eν and a Metropolis update with sµ = Wmu(Eµ) is
done.

2.5.2 AB-Model

The AB-Model is a course grained polymer model. It became very popular in
the past few years. The system consists of a chain of monomers (see Figure
1) with distance one, which have to have different types, A or B. A stands for
hydrophobic and B for hydrophilic monomers. The energy is given by

E =
1

4

N−2
∑

k=1

(1 − cos ϑk) + 4
N−2
∑

i=1

N
∑

j=i+2

(

1

r12
ij

− C(σi, σj)

r6
ij

)

(32)

where:

C(σi, σj) =







+1 : σi = σj = A
+1/2 : σi = σj = B
−1/2 : σi 6= σj

(33)

The first term describes the energy stored in the bending of the chain, the
second term is the Lennard-Jones term which takes in account the radii of the
monomers and also the interaction of the different types. I choose the sequence
A3B2AB2ABAB2ABA, which is part of the sequence 20.6 from [5].
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3 RESULTS

Figure 1: Researched sequence of monomers (A3B2AB2ABAB2ABA)

The update is a little more complicated for this model. The changes happen
in the angles between two monomers. I choose one monomer (not the first)
randomly and allowed a change of the coordinates of this monomer with two
restrictions. First the distance stays one, secondly the opening angle of the
cone with all possible points is at most 5 degree. I made this limitation to avoid
big configuration changes in one step. The rest chain of monomers behind the
changing monomer stay unchanged. Meaning that the tail is treated as hard
and moves along with the update. The coordinates on the surface of the cone
are chosen to be uniformly distributed. In formulas this is done in the following
way:

• Take three random number x, y and z out of [0, 1)

• Calculate the random angles ϕr = 2π × x and ϑr = arccos(1 − 0.01 × y),
where the 0.01 comes from the maximum opening angle of 5 degree

• Calculate the angles changes ∆ϕ = arcsin(sin ϑr × sin ϕr) and ∆ϑ =
arcsin(sin ϑr × cos ϕr), these angles changes are relative to the spheric
coordinates of the monomer

• Choose a random monomer by nr = z × (N − 1) + 1 where N is the total
number of monomers

• Calculate the distance vector ~r = ~xnr − ~xnr−1 and its spheric coordinates
ϑ and ϕ

• Replace ϑ by ϑ + ∆ϑ and ϕ by ϕ + ∆ϕ and calculate the related change
vector ~rr

• ~rr is now the displacement of all monomers behind the chosen one includ-
ing the chosen one itself.

3 Results

3.1 Ising-Model

I simulated the Ising-Model of the size 16× 16 and made 128 recursion simula-
tions with 257·103 single spin updates. The multicanonical recursion makes (first
picture of Figure 2) the histograms flatter and flatter and the weight changed
much less in a later simulation run because κ(E) got very small as pn(E) got
bigger with every run. The update procedure only changes the ratios of the
weights (equation 26) and after that the weight are calculated iteratively from
the right side, from higher to smaller energies. That is why unvisited energies
always have the same weight as their low energy neighbors, this effect can be
seen in the second picture of Figure 2.

7
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Figure 2: In recursion runs of the Ising-Modell the histograms got flatter with
every run. The multicanonical weight changed very much in the beginning and
less at the end, unvisited energy always stay at the same weight as their low
energy neighbors
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Figure 3: The histogram of the final simulation is sufficiently flat. The calculated
density of states g is symmetric and goes over 80 orders of magnitude.

After the recursion I perform a final simulation with 257 · 106 single spin
updates. The final histogram got sufficiently flat (first picture of Figure 3),
meaning that the multicanonical method works. Out of that I calculated the
density of states, which may not be the common way, but makes no difference
for discrete energies. The density goes over 80 orders of magnitude (see second
picture of Figure 3), meaning that the states at the lowest and highest energy
were exponentially suppressed and would never be visited in a canonical simu-
lation. With the help of the density I calculate the meanvalue of the energy per
spin and the specific heat per spin, the curves look very good in comparison to
the exact values (see Figure 4).

3.2 AB-Model

I researched the sequence A3B2AB2ABAB2ABA which is a part of sequence
20.6 from [5]. I set the bin size to ∆E = 0.01 which is a very small difference
and helped avoiding the problems that normally occurs with binning. The
researched energy range was −25, . . . , 25 which is a good choice, because the
lowest energy found was around Emin = −12.5. The lowest energy I found
within a multicanonical simulation was Emin = −12.58, as cross-check I did a
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Figure 4: The meanvalue of the energy per spin and the specific heat per spin
are very similar to the exact values.
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Figure 5: States with the lowest energy found in multicanonical simulations at
Emin = −12.578097 and in ELP simulation at Emin = −12.599549.

ELP simulation and found a ground state of Emin = −12.60 (for comparison
see Figure 5). I think this energy difference comes from the too short length of
the final run, but it also shows that the multicanonical simulation uses the right
energy range. I did 22 recursion simulations with 16 · 105 single angle updates
to find the multicanonical weights, I tried more recursion runs, but the system
always got stuck in some configuration around the ground state that is why the
weights have not changed essentially.

The final run had a length of 16 · 107 single angle updates. After that I
calculated the density of states (first picture of Figure 6), which could be done
without losing informations, because the bin size is so small. It also goes over 40
orders of magnitude. Out of the density the specific heat was evaluated (second
picture of Figure 6), which was very similar to sequence 20.6.
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4 Conclusions

Multicanonical simulations work for different models and help to overcome bar-
riers caused by improbability of certain configurations. Also this method is very
general and can be used for nearly every model. Small problems appear if some
configurations, e.g. the ground state, have very high multicanonical weights,
than the acceptance probability of the Metropolis update is near to zero and
the system is getting trapped in that configuration for the rest of the simulation,
so the final histogram won’t be flat anymore. Longer final runs or other initial
configurations can help in such occasions. An other problem is the binning, be-
cause for large energy ranges and small bin sizes the histogram has many shafts
which have to be filled with entries what can take very long, but big bin sizes
lead to information loses.

In summary it can be ascertained that the method of multicanonical simula-
tion is much better than normal canonical simulation especially in low tempera-
ture regions. It is a technical method to help avoiding improbability and cut-off
problems, but no real physical method like cluster algorithms [6] [7] and parallel
tempering [8]. However it is a very good method because it uses the same input
as a canonical simulation expect the estimates of the multicanonical weights.
The output contains much more informations because results for all tempera-
tures can be calculated out of one run. In comparison, a canonical simulation
provides only informations about one temperature in one run. That is why the
multicanonical method should be used if possible and advisable, because much
better results follow nearly for free.
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